PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on Electrochemical Performance of Dimensionally Stable Anodes during Zinc Electrowinning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In zinc electrowinning, small amounts of manganese ions additives are needed in the electrolyte to reduce the corrosion of anodes and minimize the contamination of cathodic zinc by dissolved lead. However, excess manganese oxide could cover the dimensionally stable anodes (DSA) surface and decrease their service life. Additives of phosphoric acid are put in the electrolyte to complex the manganic Mn3+ ion and hence reduce its disproportionation to MnO2. In the investigation, phosphoric acid was added to sulfuric acid or zinc electrolytes, and conventional and recent electrochemical measurements were carried out to examine electrochemical behaviour of DSA (Ti/IrO2-Ta2O5) anode during zinc electrolysis at 48 mA/cm2 and 39°C. It was observed that the anodic potentials of DSA anodes were lower by 27 mV after 5 h polarization in the zinc electrolyte containing 35 g/L phosphoric acid at 39°C. Electrochemical impedance measurements show that the addition of 35 ml/L H3PO4 to the zinc electrolyte can increase impedance resistances of the DSA mesh anodes. Cyclic voltammogram studies (CV) at a scan rate of 5 mV/s without agitation show that the oxidation peak in the solution with 35 ml/L phosphoric acid addition is highest, followed by that with 17 ml/L phosphoric acid addition and that without addition of phosphoric acid.
Twórcy
autor
  • Hunan University of Technology, School of Metallurgical, ZhuZhou, China, 412002
  • Laval University, Department of Mining, Metallurgical and Materials Engineering, Quebec, QC, Canada, G1K 7P4
  • Hydro-Québec Research Institute, Shawinigan, QC, Canada, G9N 7N5
  • Hunan University of Technology, School of Metallurgical, ZhuZhou, China, 412002
autor
  • Hunan University of Technology, School of Metallurgical, ZhuZhou, China, 412002
Bibliografia
  • [1] H.H. Li, T.C. Yuan, R.D. Li, W.J. Wang, D. Zheng, D.Z. Yuan, Electrochemical properties of powder-pressed Pb-Ag-PbO2 anodes, Transactions of Nonferrous Metals Society of China 29, 2422-2429 (2019).
  • [2] V. Krstric, B. Pesovski, Reviews the research on some dimensionally stable anodes (DSA) based on titanium, Hydrometallurgy 185, 71-75 (2019).
  • [3] W. Zhang, E. Ghali, G. Houlachi, Review of oxide coated catalytic titanium anodes performance for metal electrowinning, Hydrometallurgy 169, 456-467 (2017).
  • [4] F. Moradi, C. Dehghanian, Addition of IrO2 to RuO2+TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media, Prog. Nat. Sci.: Mater. Int. 24, 134-141 (2014).
  • [5] W. Zhang, M. Robichaud, E. Ghali, G. Houlachi, Electrochemical behavior of mesh and plate oxide coated anodes during zinc electrowinning, Trans. Nonferrous Met. Soc. China 26, 589-598 (2016).
  • [6] P. Ramachandra, V. Nandakumar, N. Sathaiyan, Electrolytic recovery of zinc from zinc ash using a catalytic anode, Journal of Chemical Technology and Biotechnology 79, 578-583 (2004).
  • [7] B. Liu, B.Z. Ma, Y.Q. Chen, C.Y. Wang, Corrosion mechanism of Ti/IrO2-RuO2-SiO2 anode for oxygen evolution in sulfuric acid solution, Corrosion Science 170, 108662 (2020).
  • [8] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, New York USA (1974).
  • [9] N. Sorour, W. Zhang, E. Ghali, G. Houlachi, A review of organic additives in zinc electrodeposition process (performance and evaluation), Hydrometallurgy 171, 320-332 (2017).
  • [10] W. Ye, F.Y. Xu, L. Jiang, N. Duan, J. Li, Z. Ma, F.L. Zhang, L.J. Chen, Lead release kinetics and film transformation of Pb-MnO2 pre-coated anode in long-term zinc electrowinning, Journal of Hazardous Materials 408, 124931 (2021).
  • [11] C. Zhang, N. Duan, L. Jiang, F. Xu, The impact mechanism of Mn2+ ions on oxygen evolution reaction in zinc sulfate electrolyte, Journal of Electroanalytical Chemistry 811, 53-61 (2018).
  • [12] S. Nijjer, J. Thonstad, G.M. Haarberg, Cyclic and Linear Voltammetry on Ti/IrO2-Ta2O5-MnOx Electrodes in Sulphuric Acid Containing Mn2+ ions, Electrochimica Acta 46, 3503-3508 (2001).
  • [13] R. Jaimes, H.M. Mirand, L. Lartundo-Rojas, I. González, Characterization of anodic deposits formed on Pb-Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(II), Hydrometallurgy 156, 53-62 (2015).
  • [14] I. Ivanov, Y. Stefanov, Electroextraction of zinc from sulphate electrolytes containing antimony ions and hydroxyethylated-butyne-2-diol-1, 4: Part 3: The influence of manganese ions and a divided cell, Hydrometallurgy 64, 181-186 (2002).
  • [15] P. Ramachandran, K.V. Venkateswaran, R. Srinivasan, Inhibition of MnO2 formation by additives during zinc electrowinning, Bulletin of Electrochemistry 2, 639-648 (1986).
  • [16] W.S. Zhang, C.Y. Cheng, Manganese metallurgy review. Part III: Manganese control in zinc and copper electrolytes, Hydrometallurgy 89, 178-188 (2007).
  • [17] D. Velayutham, M. Noel, S. Chidambaram, Influence of acid strength and other addition agents on the electrochemical production of manganic sulphate from manganous sulphate, Bulletin of Electrochemistry 9, 99-102 (1993).
  • [18] G.N. Martellia, R. Ornelas, G. Faita, Deacivation mechanism of oxygen evolving anodes at high current densities, Electrochim. Acta 39, 1551-1558 (1994).
  • [19] P. Ramachandran, K.V. Venkateswaran, R. Srinivasan, Inhibition of PbO2 formation during lead electrowinning, J. Appl. Electrochem. 15, 937-945 (1985).
  • [20] ASTM G61-86, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements For Localized Corrosion Susceptibility of Iron-, Nickel, or Cobalt-Base Alloys, Philadelphia, ASTM Publication, PA. 03 (2), 231-235 (2001).
  • [21] ASTM G5-94, Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, Philadelphia, ASTM Publication, PA. 03 (2), 54-59 (2001).
  • [22] K. Lau, P. Samanbar, Assessment of durability and zinc activity of zinc-rich primer coatings by electrochemical noise technique, Progress in Organic Coatings 167, 106840 (2022).
  • [23] W. Zhang, C.Q. Tu, Y.F. Chen, W.Y. Li, G. Houlachi, Cyclic Voltammetric Studies of the behaviour of lead-silver anodes in zinc electrolytes, Journal of Materials Engineering and Performance 22, 1672-1679 (2013).
  • [24] W. Zhang, S. Haskouri, E. Ghali, G. Houlachi, Lead-silver anode behavior for zinc electrowinning in sulfuric acid solution, Corrosion Reviews 37 (2), 157-178 (2019).
  • [25] D.A. Eden, Electrochemical Noise, Uhlig’s Corr. Handbook (Ed. R.W. Revie), The Electrochemical Society, John Wiley, NY, US, 167-1177 (2011).
  • [26] R. Cottis, S. Turgoose, Electrochemical impedance and noise, in Corrosion Testing Made Easy (Ed. B.C. Syrett), NACE International ISBN: 1-57590-093-9 (1999).
  • [27] C. Wang, Y.Z. Cai, C.Q. Ye, S.G. Dong, X.S. Cai, Y.H. Cao, C.J. Lin, In situ monitoring of the localized corrosion of 304 stainless steel in FeCl3 solution using a joint electrochemical noise and scanning reference electrode technique, Electrochemistry Communication 90, 11-15 (2018).
  • [28] W. Zhang, S. Jin, R. Tremblay, E. Ghali, Skin and bulk corrosion properties of die cast and thixocast AZ91D magnesium alloy in 0.05 M NaCl solution, Canadian Metallurgical Quartely 45, 181-188 (2006).
Uwagi
1. The authors are grateful to the Project (RDCPJ 346365-06) from the Natural Sciences and Engineering Research Council of Canada, and Project (2019JJ60009) by the Hunan Provincial Natural Science Foundation.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae147154-4461-4017-9ec9-decd5867cf8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.