PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine learning for analysis of gene expression data in fast- and slow-progressing amyotrophic lateral sclerosis murine models

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Amyotrophic lateral sclerosis is a fatal motor neuron disease characterised by degenerative changes in both upper and lower motor neurons. Current treatment options in the general cohort of ALS patients have only a minimal impact on survival. Only two approved medications are available today, just addressing the management of symptoms and supporting the respiration. In this work, gene expression data from genetically modified murine motor neurons have been analysed with machine learning techniques, with the scope of distinguishing between mice developing a fast progression of the disease, and mice showing a slower progression. Results showed high accuracy (above 80%) in all tasks, with peaks of accuracy for specific ones – such as distinguishing between fast and slow progression. In the above mentioned task the best performing algorithm reached an accuracy of 100%. This research group is currently working on three more investigations on data from mice, using similar approaches and methodology, focusing on thoracic and lumbar metabolomic data as well as microbiome data. We believe that, based on the findings in the murine models, machine learning could be used to discover ALS progression markers in humans by looking at features related to the immune response. This could pave the path for the discovery of druggable targets and disease biomarkers for homogeneous ALS patient subgroups.
Twórcy
  • Department of Information Engineering, University of Florence, via di Santa Marta, 3, Florence 50139, Italy; University of Warwick, School of Engineering, Coventry, UK
  • Department of Information Engineering, University of Florence, Florence, Italy
  • Department of Information Engineering, University of Florence, Florence, Italy
  • Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
  • Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
  • Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
  • Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
Bibliografia
  • [1] Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 2019;13:1310.
  • [2] Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol 2020;27(10):1918–29.
  • [3] Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med 2017;377(2):162–72.
  • [4] Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler 2009;10(5-6):310–23.
  • [5] Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet 2011;377(9769):942–55.
  • [6] Chiò A, Logroscino G, Traynor B, Collins J, Simeone J, Goldstein L, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41(2):11830.
  • [7] Alsultan AA, Waller R, Heath PR, Kirby J. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromusc Dis 2016;6:49.
  • [8] Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17(1):17–23.
  • [9] Niccolai E, Di Pilato V, Nannini G, Baldi S, Russo E, Zucchi E, et al. The gut microbiota-immunity axis in ALS: A role in deciphering disease heterogeneity? Biomedicines 2021;9 (7):753.
  • [10] Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 2014;13 (11):1127–38.
  • [11] Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, De Carvalho M, et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol. 2013;12(3):310-22.
  • [12] Bowser R, Turner MR, Shefner J. Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations. Nat Rev Neurol 2011;7(11):631–8.
  • [13] Régal L, Vanopdenbosch L, Tilkin P, Van Den Bosch L, Thijs V, Sciot R, et al. The G93C mutation in superoxide dismutase 1: clinicopathologic phenotype and prognosis. Arch Neurol 2006;63(2):262. https://doi.org/10.1001/archneur.63.2.262.
  • [14] Penco S, Lunetta C, Mosca L, Maestri E, Avemaria F, Tarlarini C, et al. Phenotypic heterogeneity in a SOD1 G93D Italian ALS family: an example of human model to study a complex disease. J Mol Neurosci. 2011;44(1):25-30.
  • [15] Bendotti C, Carr‘ı MT. Lessons from models of SOD1-linked familial ALS. Trends Mol Med 2004;10(8):393–400.
  • [16] Pizzasegola C, Caron I, Daleno C, Ronchi A, Minoia C, Carr‘ı MT, et al. Treatment with lithium carbonate does not improve disease progression in two different strains of SOD1 mutant mice. Amyotroph Lateral Scler. 2009;10(4):221-8.
  • [17] Nardo G, Iennaco R, Fusi N, Heath PR, Marino M, Trolese MC, et al. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. Brain. 2013;136(11):3305-32.
  • [18] Hasic Telalovic J, Pillozzi S, Fabbri R, Laffi A, Lavacchi D, Rossi V, et al. A Machine learning decision support system (DSS) for neuroendocrine tumor patients treated with somatostatin analog (SSA) therapy. Diagnostics 2021;11(5):804. https://doi. org/10.3390/diagnostics11050804.
  • [19] Iadanza E, Goretti F, Sorelli M, Melillo P, Pecchia L, Simonelli F, et al. Automatic detection of genetic diseases in pediatric age using pupillometry. IEEE Access 2020;8:34949–61.
  • [20] Guidi G, Pettenati MC, Melillo P, Iadanza E. A machine learning system to improve heart failure patient assistance. IEEE J Biomed Health Inf 2014;18(6):1750–6.
  • [21] Zhang JZ, Srivastava PR, Sharma D, Eachempati P. Big data analytics and machine learning: A retrospective overview and bibliometric analysis. Expert Syst Appl 2021;184:115561.
  • [22] Chattu VK et al. A review of artificial intelligence, big data, and blockchain technology applications in medicine and global health. Big Data Cogn Comput 2021;5(3):41.
  • [23] Iadanza E, Fabbri R, Basić-Ci Cak D, Amedei A, Telalovic JH. Gut microbiota and artificial intelligence approaches: a scoping review. Health Technol 2020:1–16.
  • [24] Eid MA, Giakoumidis N, El Saddik A. A novel eye-gaze-controlled wheelchair system for navigating unknown environments: case study with a person with ALS. IEEE Access 2016;4:558–73.
  • [25] Ramakrishnan J, Mavaluru D, Sakthivel RS, Alqahtani AS, Mubarakali A, Retnadhas M. Brain–computer interface for amyotrophic lateral sclerosis patients using deep learning network. Neural Comput Appl 2020;1–15.
  • [26] Huang CH, Yip BS, Taniar D, Hwang CS, Pai TW. Comorbidity pattern analysis for predicting amyotrophic lateral sclerosis. Appl Sci 2021;11(3):1289.
  • [27] Karaboga HA, Gunel A, Korkut SV, Demir I, Celik R. Bayesian network as a decision tool for predicting ALS disease. Brain Sci 2021;11(2):150.
  • [28] Fernandes F, Barbalho I, Barros D, Valentim R, Teixeira C, Henriques J, et al. Biomedical signals and machine learning in amyotrophic lateral sclerosis: a systematic review. Biomed Eng Online 2021;20(1):1–22.
  • [29] Welsh RC, Jelsone-Swain LM, Foerster BR. The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front Hum Neurosci 2013;7:251.
  • [30] Chen Q-F, Zhang X-H, Huang N-X, Chen H-J. Identification of amyotrophic lateral sclerosis based on diffusion tensor imaging and support vector machine. Front Neurol 2020;11:275.
  • [31] Dickson DW, Baker MC, Jackson JL, DeJesus-Hernandez M, Finch NA, Tian S, et al. Extensive transcriptomic study emphasizes importance of vesicular transport in C9orf72 expansion carriers. Acta Neuropathol Commun 2019;7 (1):1–21.
  • [32] Bjornevik K, Zhang Z, O’Reilly EJ, Berry JD, Clish CB, Deik A, et al. Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis. Neurology 2019;92(18): e2089–100.
  • [33] Goutman SA, Boss J, Guo K, Alakwaa FM, Patterson A, Kim S, et al. Untargeted metabolomics yields insight into ALS disease mechanisms. J Neurol Neurosurg Psychiatry. 2020;91 (12):1329-38.
  • [34] Pasetto L, Callegaro S, Corbelli A, Fiordaliso F, Ferrara D, Brunelli L, et al. Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis. Mol Neurodegener 2021;16(1):1–21.
  • [35] Placek K, Benatar M, Wuu J, Rampersaud E, Hennessy L, Van Deerlin VM, et al. Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Mol Med 2021;13(1):e12595.
  • [36] Vasilopoulou C, Morris AP, Giannakopoulos G, Duguez S, Duddy W. What can machine learning approaches in genomics tell us about the molecular basis of amyotrophic lateral sclerosis? J Person Med 2020;10(4):247.
  • [37] Grollemund V, Pradat PF, Querin G, Delbot F, Le Chat G, PradatPeyre JF, et al. Machine learning in amyotrophic lateral sclerosis: achievements, pitfalls, and future directions. Front Neurosci 2019;13:135.
  • [38] Nardo G, Trolese MC, Tortarolo M, Vallarola A, Freschi M, Pasetto L, et al. New insights on the mechanisms of disease course variability in ALS from mutant SOD1 mouse models. Brain Pathology. 2016;26(2):237-47.
  • [39] Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. vol. 1. Springer series in statistics. New York; 2001.
  • [40] Nardo G, Trolese MC, Verderio M, Mariani A, de Paola M, Riva N, et al. Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous system of ALS SOD1 G93A mice. Mol Neurodegener 2018;13(1):1–24.
  • [41] Nardo G, Trolese MC, de Vito G, Cecchi R, Riva N, Dina G, et al. Immune response in peripheral axons delays disease progression in SOD1 G93A mice. J Neuroinflamm 2016;13 (1):1–16.
  • [42] Trolese MC, Mariani A, Terao M, de Paola M, Fabbrizio P, Sironi F, et al. CXCL13/CXCR5 signalling is pivotal to preserve motor neurons in amyotrophic lateral sclerosis. EBioMedicine 2020;62:103097.
  • [43] Schreiber S, Schreiber F, Garz C, Debska-Vielhaber G, Assmann A, Perosa V, et al. Toward in vivo determination of peripheral nervous system immune activity in amyotrophic lateral sclerosis. Muscle Nerve 2019;59(5):567–76.
  • [44] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011;12:2825–30.
  • [45] Chollet F, et al. Deep learning with Python. vol. 361. Manning New York; 2018.
  • [46] Tsamardinos I, Greasidou E, Borboudakis G. Bootstrapping the out-of sample predictions for efficient and accurate cross-validation. Mach Learn 2018;107(12):1895–922.
  • [47] Fix E, Hodges J. Discriminatory analysis: Nonparametric discrimination: Consistency properties. USAF School of Aviation Medicine, Project; 1952. p. 21–49.
  • [48] Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees. Wadsworth; 1984.
  • [49] Quinlan JR. Induction of decision trees. Mach Learn 1986;1 (1):81–106.
  • [50] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory. p. 144–52.
  • [51] Ian Heaton J, Goodfellow, Bengio Yoshua, Courville Aaron. Deep learning. Springer; 2018.
  • [52] Balendra R, Jones A, Jivraj N, Knights C, Ellis CM, Burman R, et al. Estimating clinical stage of amyotrophic lateral sclerosis from the ALS Functional Rating Scale. Amyotroph Lateral Scler Frontotemp Degener 2014;15(3-4):279–84.
  • [53] Ko KD, El-Ghazawi T, Kim D, Morizono H. Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach. In: IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. IEEE; 2014. p. 1–6.
  • [54] Elamin M, Bede P, Montuschi A, Pender N, Chio A, Hardiman O. Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm. J Neurol 2015;262(6):1447–54.
  • [55] Burke T, Pinto-Grau M, Lonergan K, Bede P, O’Sullivan M, Heverin M, et al. A cross-sectional population-based investigation into behavioral change in amyotrophic lateral sclerosis: Subphenotypes, staging, cognitive predictors, and survival. Ann Clin Transl Neurol 2017;4(5):305–17.
  • [56] van der Burgh HK, Schmidt R, Westeneng H-J, de Reus MA, van den Berg LH, van den Heuvel MP. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage: Clinical 2017;13:361–9.
  • [57] Pfohl SR, Kim RB, Coan GS, Mitchell CS. Unraveling the complexity of amyotrophic lateral sclerosis survival prediction. Front Neuroinf 2018;12:36.
  • [58] Gomeni R, Fava M. Amyotrophic lateral sclerosis disease progression model. Amyotroph Lateral Scler Frontotemp Degener 2014;15(1-2):119–29.
  • [59] Marin B, Couratier P, Arcuti S, Copetti M, Fontana A, Nicol M, et al. Stratification of ALS patients’ survival: a population-based study. J Neurol 2016;263(1):100–11.
  • [60] Westeneng H-J, Debray TPA, Visser AE, van Eijk RPA, Rooney JPK, Calvo A, et al. Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol 2018;17 (5):423–33.
  • [61] Beaulieu-Jones BK, Greene CS, et al. Semi-supervised learning of the electronic health record for phenotype stratification. J Biomed Inform 2016;64:168–78.
  • [62] Kato S. Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences. Acta Neuropathol 2008;115(1):97114.
  • [63] Filareti M, Luotti S, Pasetto L, Pignataro M, Paolella K, Messina P, et al. Decreased levels of foldase and chaperone proteins are associated with an early-onset amyotrophic lateral sclerosis. Front Mol Neurosci 2017;10:99.
  • [64] Murdock BJ, Zhou T, Kashlan SR, Little RJ, Goutman SA, Feldman EL. Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression. JAMA Neurol 2017;74(12):1446–54.
  • [65] Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, et al. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med 2013;5 (1):64–79.
  • [66] De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, et al. Interplay between immunity and amyotrophic lateral sclerosis: clinical impact. Neurosci Biobehav Rev 2021;127:958–78.
  • [67] Mora JS, Genge A, Chio A, Estol CJ, Chaverri D, Hernández M, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemp Degener 2020;21(1- 2):5–14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae0fe74e-b860-4849-81e4-a17405005cf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.