PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relocation of the 2018 Zakynthos, Greece, aftershock sequence: spatiotemporal analysis deciphering mechanism diversity and aftershock statistics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An Mw 6.8 earthquake occurred on October 25, 2018, 35 km ofshore from the southwest coastlines of Zakynthos Island. The aftershock sequence appeared remarkably productive with six aftershocks of M≥5.0 in the frst month and tens of aftershocks with M≥4.0 during the study period. The GCMT solution for the main shock suggests a very low angle plane (dip=24°) for a dextral strike–slip faulting (rake=165°). A similar solution is suggested for the largest aftershock (Mw 5.9) that occurred 5 days afterward. The proximity of the main shock location with the dextral active boundary of Kefalonia Transform Fault Zone (KTFZ) along with the Hellenic Subduction front supports this oblique faulting. The aftershock activity is comprised mostly in depths 5–12 km and forms eight distinctive clusters that accommodate regional strain and evidence strain partitioning. The role of stress transfer and statistical analysis are combined for detailing the highly productive aftershock sequence. Earthquake networks analysis reveals their random structure soon after the main shock, which became small-world structure after the frst 200 days. Time series analysis constructed from the aftershock frequency and seismic moment release and manifested signifcant correlation among the eight seismicity clusters.
Czasopismo
Rocznik
Strony
1263--1294
Opis fizyczny
Bibliogr. 79 poz.
Twórcy
  • Geophysics Department, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
autor
  • Geophysics Department, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
  • Geophysics Department, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
  • Geophysics Department, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
Bibliografia
  • 1. Abe S, Suzuki N (2004) Small–world structure of earthquake network. Phys A 37:357–362
  • 2. Abe S, Suzuki N (2009) Main shocks and evolution of complex earthquake networks. Braz J Phys 39(2A):428–430
  • 3. Aki K (1965) Maximum Likelihood estimate of b in the formula log N = a-bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239
  • 4. Aki K, Richards PG (1980) Quantitative seismology. Theory and methods, vol Vol. I and II. W. H. Freeman and Co, San Francisco
  • 5. Albert R, Barabasi A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97
  • 6. Aristotle University of Thessaloniki Seismological Network (1981) Permanent Regional Seismological Network operated by the Aristotle University of Thessaloniki. International Federation of Digital Seismograph Networks, Other/Seismic Network. doi: 10.7914/SN/HT
  • 7. Baek WH, Lim G, Kim K, Chang KH, Jung JW, Seo SK, Yi M, Lee DI, Ha DH (2011) Robustness of the topological properties of a seismic network. J Korean Phys Soc 58(6):1712–1714
  • 8. Beeler NM, Simpson RW, Hickman SH, Lockner DA (2000) Pore fluid pressure, apparent friction and Coulomb failure. J Geophys Res 105:25533–25542. https://doi.org/10.1029/2000JB900119
  • 9. Bengoubou-Valerius M, Gibert D (2012) Bootstrap determination of the reliability of b-values: an assessment of statistical estimators with synthetic magnitude series. Nat Hazards. https://doi.org/10.1007/s11069-012-0376-1
  • 10. Bouchon M (1981) A simple method to calculate Green’s functions for elastic layered media. Bull Seismol Soc Am 71:959–971
  • 11. Castellaro S, Mulargia F, Kagan Y (2006) Regression problems for magnitudes. Geophys J Int 165:913–930
  • 12. Chan CH, Wu YM, Tseng TL, Lin TL, Chen CC (2012) Spatial and temporal evolution of b-values before large earthquakes in Taiwan. Tectonophysic 532–535:215–222. https://doi.org/10.1016/j.tecto.2012.02.004
  • 13. Chorozoglou D, Kugiumtzis D, Papadimitriou E (2018) Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece. Phys A 499C:28–39. https://doi.org/10.1016/j.physa.2018.01.033
  • 14. Chousianitis K, Konca O (2019) Intraslab deformation and rupture of the entire subducting crust during the 25 October 2018 Mw 6.8 Zakynthos earthquake. Geophys Res Lett. https://doi.org/10.1029/2019GL085845
  • 15. Cirella A, Romano F, Avallone A, Piatanesi A, Briole P, Ganas A, Theodoulidis N, Chousianitis K, Volpe M, Bozionellos G, Selvaggi G, Lorito S (2020) The 2018 Mw 6.8 Zakynthos (Ionian Sea, Greece) earthquake: seismic source and local tsunami characterization. Geophys J Intern 221:1043–1054. https://doi.org/10.1093/gji/ggaa053
  • 16. Coutant O (1989) Program of numerical simulation AXITRA, Research Report. LGIT, Grenoble
  • 17. Donges JF, Heitzig J, Donner RV, Kurths J (2012) Analytical framework for recurrence network analysis of time series. Phys Rev E 85:046105. https://doi.org/10.1103/physreve.85.046105
  • 18. Efron B (1982) The jackknife, the bootstrap and other resampling plans. Soc Ind Appl Math Phila. https://doi.org/10.1137/1.9781611970319
  • 19. Erdős P, Rényi A (1959) On random graphs. Pub Math (Debrecen) 6:290–297
  • 20. Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523
  • 21. Harris RA (1998) Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. J Geophys Res 103:24347–24358
  • 22. He X, Wang L, Zhu H, Liu Z (2019) Statistical properties of complex network for seismicity using depth-incorporated influence radius. Acta Geophys 67:1515–1523. https://doi.org/10.1007/s11600-019-00369-0
  • 23. Horvath S (2011) Weighted network analysis, applications in genomics and systems biology. Springer, New York, p 421. ISBN 978-1-4419-8819-5
  • 24. Howell A, Palamartchouk K, Papanikolaou X, Paradissis D, Raptakis C, Copley A, England P, Jackson J (2017) The 2008 Methoni earthquake sequence: the relationship between the earthquake cycle on the subduction interface and coastal uplift in SW Greece. Geophys J Intern 208:1592–1610
  • 25. Hutton LK, Boore DM (1987) The Ml Scale in Southern California. Bull Seismol Soc Am 77:2074–2094
  • 26. Jimenez A, Tiampo KF, Posadas AM (2008) Small world in a seismic network: the California case. Nonlinear Proc Geophys 15:389–395
  • 27. Kagan YY (2003) Accuracy of modern global earthquake catalogs. Phys Earth Planet Int 135:173–209. https://doi.org/10.1016/S0031-9201(02)00214-5
  • 28. Kanamori H, Anderson L (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095
  • 29. Karakostas V, Mirek K, Mesimeri M, Papadimitriou E, Mirek J (2017) The aftershock sequence of the 2008 Achaia, Greece, earthquake: joint analysis of seismicity relocation and persistent scatterers interferometry. Pure Appl Geophys 174(1):151–176
  • 30. Karakostas V, Papadimitriou E, Kostoglou A, Chorozoglou D (2019) The 2018 Zakynthos Island, Greece, earthquake sequence: implications in a region of distributed deformation. 15th Intern. Conf. Geol. Soc. Greece, 22–24 May 2019, Athens, Greece (abstract)
  • 31. Kikuchi M, Kanamori H (1991) Inversion of complex body waves—III. Bull Seismol Soc Am 81(6):2335–2350
  • 32. King G, Stein R, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953
  • 33. Kissling E, Ellsworth WL, Eberhart-Phillips D, Kradolfer U (1994) Initial reference models in local earthquake tomography. J Geophys Res 99:19635–19646
  • 34. Klein FW (2000) User’s guide to HYPOINVERSE–2000, a Fortran program to solve earthquake locations and magnitudes. US Geological Survey. Open File Report 02–171 Version 1.0
  • 35. Kokinou E, Papadimitriou E, Karakostas V, Vallianatos F (2006) The Kefalonia Transform Zone (offshore Western Greece) with special emphasis to its prolongation towards the Ionian abyssal plain. Mar Geophys Res 27(4):241–252. https://doi.org/10.1007/s11001-006-9005-2
  • 36. Leptokaropoulos KM, Karakostas VG, Papadimitriou EE, Adamaki AK, Tan O, Inan S (2013) A homogeneous earthquake catalog for western Turkey and magnitude of completeness determination. Bull Seismol Soc Am 103(5):2739–2751. https://doi.org/10.1785/0120120174
  • 37. Lippiello E, Cirillo A, Godano G, Papadimitriou E, Karakostas V (2016) Real time forecast of aftershocks from a single seismic station signal. Geophys Res Lett 43:6252–6258
  • 38. Lippiello E, Petrillo G, Godano C, Tramelli A, Papadimitriou E, Karakostas V (2019) Forecasting of the first hour aftershocks by means of the perceived magnitude. Nat Commun 10:2953. https://doi.org/10.1038/s41467-019-10763-3
  • 39. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913
  • 40. Melis N, Tselentis GA (1998) 3-D P-wave velocity structure in western Greece determined from tomography using earthquake data recorded at the University of Patras seismic network (PATNET). Pure Appl Geophys 152:329–348
  • 41. Mesimeri M, Karakostas V, Papadimitriou E, Tsaklidis G, Jacobs K (2018) Relocation of recent seismicity and seismotectonic properties in the Gulf of Corinth (Greece). Geophys J Intern 212(2):1123–1142. https://doi.org/10.1093/gji/ggx450
  • 42. Omori F (1895) On the aftershocks of earthquakes. J Coll Sci Imp Univ Tokyo 7:111–200
  • 43. Orlecka-Sikora B, Cielesta C, Lasocki S (2019) Tracking the development of seismic fracture network from The Geysers geothermal field. Acta Geophys 76:341–350
  • 44. Papadimitriou EE (1993) Focal mechanism along the convex side of the Hellenic Arc and its tectonic significance. Boll Geof Teor Appl 35:401–426
  • 45. Papadimitriou EE (2002) Mode of strong earthquake occurrence in central Ionian Islands (Greece): possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks. Bull Seismol Soc Am 90:3293–3308
  • 46. Papadimitriou E, Karakostas V, Mesimeri M, Vallianatos F (2016) The Mw 6.7 12 October 2013 western Hellenic Arc main shock and its aftershock sequence: implications of the slab properties. Intern J Earth Sci 105:2149–2160. https://doi.org/10.1007/s00531-016-1294-3
  • 47. Papadimitriou E, Karakostas V, Mesimeri M, Ghouliaras C, Kourouklas C (2017) The Mw 6.5 17 November 2015 Lefkada (Greece) earthquake: structural interpretation by means of the aftershock analysis. Pure Appl Geophys 174(10):3869–3888
  • 48. Papazachos BC, Comninakis PE (1971) Geophysical and tectonic features of the Aegean Arc. J Geophys Res 76:8517–8533
  • 49. Papazachos BC, Papazachou C (2003) The earthquakes of Greece. Ziti Publications Co., Thessaloniki, p 304
  • 50. Papazachos BC, Karakaisis GF, Papadimitriou EE, Papaioannou ChA (1997a) The regional time and magnitude predictable model and its application to the Alpine-Himalayan belt. Tectonophysics 271:295–323
  • 51. Papazachos BC, Kiratzi AA, Karakostas BG (1997b) Toward a Homogeneous Moment-Magnitude Determination for Earthquakes in Greece and the Surrounding Area. Bull Seismol Soc Am 87:474–483
  • 52. Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. In: 10th Intern. Congr. Hellen. Geolog. Soc., Thessaloniki, Greece, 14–17 April 2004, pp 539–540
  • 53. Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid–saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14(2):227–241
  • 54. Robinson R, McGinty PJ (2000) The enigma of the Arthur’s Pass, New Zealand, earthquake: 2. The aftershock distribution and its relation to regional and induced stress fields. J Geophys Res 105:16139–16150. https://doi.org/10.1029/2000JB900012
  • 55. Roeloffs E (1996) Poroelastic techniques in the study of earthquake—related hydrologic phenomena. Adv Geophys 37:135–195
  • 56. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroscience 52:1059–1069
  • 57. Schaff DP, Beroza GC (2004) Coseismic and postseismic velocity changes measured by repeating earthquakes. J Geophys Res. https://doi.org/10.1029/2004JB003011
  • 58. Schaff DP, Waldhauser F (2005) Waveform cross–correlation–based differential travel–time measurements at the northern California seismic network. Bull Seismol Soc Am 95:2446–2461
  • 59. Scholz C (1968) The frequency–magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58(1):399–415
  • 60. Scholz C (1990) The mechanics of earthquakes and faulting. Cambridge Academic Press, Cambridge, p 439
  • 61. Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42
  • 62. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542. https://doi.org/10.1038/nature04094
  • 63. Scordilis EM, Karakaisis GF, Karakostas BG, Panagiotopoulos DG, Comninakis PE, Papazachos BC (1985) Evidence for transform faulting in the Ionian Sea: the Cephalonia Island earthquake sequence. Pure Appl Geophys 123:388–397
  • 64. Shaw B, Ambraseys NN, England PC, Floyd MA, Gorman GJ, Higham TFG, Jackson JA, Nocquet JM, Pain CC, Piggott MD (2008) Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nat Geosci 1:268–276
  • 65. Shelly DR, Ellsworth WL, Hill DP (2016a) Fluid–faulting evolution in high definition: connecting fault structure and frequency–magnitude variations during the 2014 Long Valley Caldera, California, earthquakes swarm. J Geophys Res 121:1776–1795. https://doi.org/10.1002/2015JB012719
  • 66. Shelly DR, Hardebeck JL, Ellsworth WL, Hill DP (2016b) A new strategy for earthquake focal mechanisms using waveform–correlation–derived relative polarities and cluster analysis: application to the 2014 Long Valley Caldera earthquake swarm. J Geophys Res 121:8622–8641. https://doi.org/10.1002/2016JB013437
  • 67. Skoumal RJ, Brunzinski MR, Currie BS (2015) Earthquakes induced by hydraulic fracturing in Poland township, Ohio. Bull Seismol Soc Am 105:189–197. https://doi.org/10.1785/0120140168
  • 68. Sokos EN, Zahradnik J (2008) ISOLA a Fortran code and a Matlab GUI to perform multiple–point source inversion of seismic data. Comput Geosci 34(8):967–977. https://doi.org/10.1016/j.cageo.2007.07.005
  • 69. Sokos EN, Zahradnik J (2013) Evaluating centroid–moment–tensor uncertainty in the new version of ISOLA software. Seismol Res Lett 84(4):656–665. https://doi.org/10.1785/0220130002
  • 70. Sokos E, Gallovic F, Evangelidis CP, Serpetsidaki A, Plicka V, Kostelecky J, Zahradnik J (2020) The 2018 Mw 6.8 Zakynthos, Greece, earthquake: dominant strike–slip faulting near subducting slab. Seismol Res Lett 91(2A):721–732. https://doi.org/10.1785/0220190169
  • 71. Telesca L, Báez-Benitez J (2018) Investigating dynamical features in the long-term daily maximum temperature time series recorded at Adrián Jara, Paraguay. Acta Geophys 66(3):393–403
  • 72. Waldhauser F (2001) HypoDD—a program to compute double–difference hypocenter locations. US Geological Survey Open File Report, pp 01–113
  • 73. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California. Bull Seismol Soc Am 90:1353–1368
  • 74. Watts DJ, Strogatz SH (1998) Collective dynamics of small–world networks. Nature 393:440–442
  • 75. Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic Mapping Tools: improved version released. EOS Trans Am Geophys Union 94(45):409–410. https://doi.org/10.1002/2013EO450001
  • 76. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90(4):859–869. https://doi.org/10.1785/0119990114
  • 77. Wu Υ, Chen S, Huang T, Huang H, Chao W, Koulakov I (2018) Relationship between earthquake b-values and crustal stresses in a young orogenic belt. Geophys Res Lett 45:1832–1837
  • 78. Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J Intern 31:341–359
  • 79. Zahradník J, Sokos E (2018) Fitting waveform envelopes to derive focal mechanisms of moderate earthquakes. Seismol Res Lett 89:1137–1145
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae0cf335-e287-4315-8fcc-667af7e08894
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.