PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated differential diagnostics of respiratory diseases using an electronic stethoscope

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The outbreak of the coronavirus infection, which has escalated into a pandemic, has worsened the already unfavourable situation with respiratory system diseases in Ukraine. The burden on doctors has significantly increased, necessitating the exploration of simplified and expedited methods for conducting routine respiratory examinations. The research aims to describe a model for creating an automated differential diagnosis of respiratory noise using an electronic stethoscope, combining medical and clinical information about the types of respiratory noise characterizing the normal or pathological state of the respiratory system with a means of its information and technical processing. Material and methods: The research methods were analysis of theoretical information about the types of respiratory noise, analysis of technical information for choosing an information technology tool for processing biological signals; synthesis of the results; modelling. Results: The research resulted in a model of automated differential diagnosis based on the principle of auscultation, which includes the process of extracting the sound of air movement inside and outside the lungs and the classification of the extracted sounds. Automation of this process concerned only the classification of the extracted sounds since the principle of extraction itself was the same for both mechanical and automatic implementations. Conclusions: The automatic classification process was intended to reduce the time of the procedure and reduce the influence of the human factor, eliminating the possibility of medical error. To implement the process, a deep machine learning method was used, the array of information for which was to be a created phonotheque of acoustic signals of the respiratory system, which would include all types of respiratory noise concerning normal or pathological processes in the body.
Rocznik
Strony
208--219
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Department of International Law, Kyiv National Economic University named after Vadym Hetman, Ukraine
  • Department of Computer Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
autor
  • Department of Computer Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
Bibliografia
  • 1. Bukhalo HО. Mortality in Ukraine: Changes in the structure taking into account the impact of the COVID-19 pandemic. Scientific Trends and Trends in the Context of Globalization. 2021; 93:354-359.
  • 2. Fan M, Wang Q, Liu J, Su L, et al. Real-world evaluation of the Stemoscope electronic tele-auscultation system. BioMedical Engineering OnLine. 2022;21(1):63. https://doi.org/10.1186/s12938-022-01032-4
  • 3. Yilmaz G, Rapin M, Pessoa D, et al. A wearable stethoscope for long-term ambulatory respiratory health monitoring. Sensors. 2020;20(18):5124. https://doi.org/10.3390/s20185124
  • 4. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare Journal. 2019;6(2):94-98. https://doi.org/10.7861/futurehosp.6-2-94
  • 5. Panaskin DV, Bilokon YO, Babko DS. Machine training in the diagnosis of pulmonary system diseases. Tekhnichni Nauky ta Tekhnolohiyi. 2022;2(28):76-87. https://doi.org/10.25140/2411-5363-2022-2(28)-76-87
  • 6. Babakov MF, Kryvenko YO, Kryvenko OV, Lutsen VI. Features of the construction of sensors for recording acoustic noises of the breathing process. In: International Scientific and Practical Conference "Information Systems and Technologies in Medicine" (pp. 206-208). Kharkiv: National Aerospace University; 2021.
  • 7. Dediv IY, Sverstyuk AS, Dediv LY, Dozorskyy VH, Khvostivskyy MO. Mathematical modeling, methods and software of respiratory noise processing in computer auscultative diagnostic systems. Lviv: Mahnoliya-2006; 2021.
  • 8. Ponomarenko IS. Legal regulation of personal data protection in the medical field: Domestic and international experience. Pravo i Suspilstvo. 2020;6(2):120-126. https://doi.org/10.32842/2078-3736/2020.6.2.2.18
  • 9. Radutnyy OE. Law and some aspects of the world of atoms and bits (robotics, artificial intelligence, digital human being). The Issue of Fighting Crime. 2021;41:13-28. https://doi.org/10.31359/2079-6242-2021-41-13
  • 10. R.A.L.E. Repository. R.A.L.E. Lung Sounds Depository. 2023. Available from: http://www.rale.ca/.
  • 11. Brynza MS, Makharynska OS, Karnaukh EV. Auscultation of the lungs: Additional respiratory sounds (crepitation, wheezing, pleural friction noise). Kharkiv: V.N. Karazin Kharkiv National University; 2019.
  • 12. Kryvenko VI, Nepryadkina IV, Fedorova OP, Pakhomova SP, Kolesnyk MY, Kachan IS, Radomska TY. Basic clinical syndromes in pulmonology. Zaporizhzhia: Zaporizhzhia State Medical University; 2018.
  • 13. Zimmermann N, Wikenheiser-Brokamp KA. Hypereosinophilic syndrome in the differential diagnosis of pulmonary infiltrates with eosinophilia. Annals of Allergy, Asthma & Immunology. 2018;121(2):179-185. https://doi.org/10.1016/j.anai.2018.05.014
  • 14. Marini T, Hobbs SK, Chaturvedi A, Kaproth-Joslin K. Beyond bronchitis: A review of the congenital and acquired abnormalities of the bronchus. Insights into Imaging. 2017;8:141-153. https://doi.org/10.1007/s13244-016-0537-y
  • 15. Saguil A, Wyrick K, Hallgren J. Diagnostic approach to pleural effusion. American Family Physician. 2014;90(2): 99-194.
  • 16. Wu YC, Han CC, Chang CS, Chang FL, Chen SF, Shieh TY, Chen HM, Lin JY. Development of an electronic stethoscope and a classification algorithm for cardiopulmonary sounds. Sensors. 2021;22(11):1-12. https://doi.org/10.3390/s22114263
  • 17. Choi RW, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Translational Vision Science & Technology. 2020;9(2):14. https://doi.org/10.1167/tvst.9.2.14
  • 18. Shandaulov AK, Mazhbich BI. Postural changes in the pulmonary hemodynamics of rats under high-altitude conditions. Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova. 1991;77(1):89-96.
  • 19. Mustafin AT, Volkov EI. The role of lipid and antioxidant exchanges in cell division synchronization (mathematical model). Biological Cybernetics. 1984;49(3):149-154. https://doi.org/10.1007/BF00334460
  • 20. Shandaulov AKh, Khamchiev KM, Astanin AA, Ibraeva SS, Khasenova KM. Influence of high altitude hypoxia on the hemodynamics of the small circle of blood circulation and indicators of red blood of rats. Systematic Reviews in Pharmacy. 2020;11(2):284-288.
  • 21. Lukianenko N, Kens O, Nurgaliyeva Z, Toguzbayeva D, Sakhipov M. Finding a molecular genetic marker for the incidence of recurrent episodes of acute obstructive bronchitis in children. Journal of Medicine and Life. 2021;14(5):695-699. https://doi.org/10.25122/jml-2021-0052
  • 22. Ramazanov SK, Makarenko M B, Vovchak AV. Use of artificial intelligence in medicine. In: Materials of the 3rd All-Ukrainian Scientific and Practical Online Conference "The Young Modern Scientist - the Foundation for the Development of Education, Science and Business in Ukraine" (pp. 271-276). Dnipro: Dnipro Academy of Continuing Education; 2022.
  • 23. Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW & Kwak TY. Artificial Intelligence in Pathology. Journal of Pathology and Translational Medicine. 2019;53(1): 1-12. https://doi.org/10.4132/jptm.2018.12.16
  • 24. Shi L, Du K, Zhang C, Ma H, Yan W. Lung sound recognition algorithm based on VGGish-BiGRU. IEEE Access. 2019;7: 139438-139449. https://doi.org/10.1109/ACCESS.2019.2943492
  • 25. Koteluk O, Wartecki A, Mazurek S, Kolodziejczak I, Mackiewicz A. How do machines learn? Artificial intelligence as a new era in medicine. Journal of Personalized Medicine. 2021;11(1):32. https://doi.org/10.3390/jpm11010032
  • 26. Dmytriiev D, Dobrovanov O. Post-COVID pain syndrome. Anaesthesia, Pain and Intensive Care. 2021;25(4):505-512. https://doi.org/10.35975/apic.v25i1.1212
  • 27. Dmytriiev D, Dobrovanov O, Kralinsky K, Dmytriiev K, Melnychenko M. A case report of successful experience of using adaptive support ventilation in the pediatric patient with viral interstitial pneumonia covid-19 positive. Lekarsky Obzor. 2021;70(3):119-123.
  • 28. Khamchiyev KM, Suleimenova FM, Sagimova GK, Adaibayev KT, Suchshenko AF, Serkesh YeM. Morphological, immunophysiological and clinical features of respiration and blood circulation under the influence of combined stress in the Covid-19 conditions. Systematic Reviews in Pharmacy. 2020;11(12):370-374.
  • 29. Chin-Yee B, Upshur R. Three problems with big data and artificial intelligence in medicine. Perspectives in Biology and Medicine. 2019;62(2):237-256. https://doi.org/10.1353/pbm.2019.0012
  • 30. Arnold MH. Teasing out artificial intelligence in medicine: An ethical critique of artificial intelligence and machine learning in medicine. Journal of Bioethical Inquiry. 2021;18:121-139. https://doi.org/10.1007/s11673-020-10080-1
  • 31. Pētersone M, Ketners K, Krieviņš D. Integrate health care system performance assessment for value-based health care implementation in Latvia. Research for Rural Development. 2021;36:122-128. https://doi.org/10.22616/rrd.27.2021.018
  • 32. Mernyk A, Yaroshenko O, Inshyn M, Lukianov D, Hyliaka O. Vaccination: Human right or duty. Georgian Medical News. 2021;(315):135-140.
  • 33. Kralinsky K, Pisarchikova M, Dobrovanov AE, Babela R. Protocol for the diagnosis, management and treatment of pediatric patients with COVID-19 according to the recommendations of the Slovakian Pediatric Society. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2020;65(5):93-99. https://doi.org/10.21508/1027-4065-2020-65-5-93-99
  • 34. Skak K, Tabriz NS, Nurtazina ZB, Mutaikhan Z. Drug-resistant tuberculosis and modern approaches towards its diagnosis. International Journal of Clinical Skills. 2017;11(3):73-78. https://doi.org/10.4172/Clinical-Skills.1000115
  • 35. De Araujo Dourado D, Aith FMA. The regulation of artificial intelligence for health in Brazil begins with the General Personal Data Protection Law. Revista de Saude Publica. 2022;56:1-7. https://doi.org/10.11606/s1518-8787.2022056004461
  • 36. Wang C, Zhang J, Lassi N, Zhang W. Privacy protection in using artificial intelligence for healthcare: Chinese regulation in comparative perspective. Healthcare. 2022;10(10):1-19. https://doi.org/10.3390/healthcare10101878
  • 36. Beckersa R, Kwadeb Z, Zancac F. The EU medical device regulation: Implications for artificial intelligence-based medical device software in medical physics. Physica Medica. 2021;83:1-8. https://doi.org/10.1016/j.ejmp.2021.02.011
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Błędna numeracja bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae0c4bf6-1b1b-4d9d-97f1-dfb7c56ae776
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.