PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating carbon emission efficiencies in European Union transport: pre and post pandemic analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Reducing carbon emissions has become a strategic priority for sustainable logistics and supply chain management in the European Union (EU). The European Green Deal promotes decarbonization initiatives across key sectors, including transportation. This study evaluates the carbon emission efficiency of 25 EU countries across four transport modes-road, rail, air, and sea-before and after the COVID-19 pandemic, offering insights into sustainable transport and logistics performance. Methods: Data Envelopment Analysis (DEA) was applied to assess the efficiency of energy use and employment inputs for each mode of transport mode. Inputs included rail and road lengths, as well as the number of trucks, while outputs comprised emission values, passenger numbers, freight volume, and port cargo throughput for maritime transport. Efficiency scores were calculated using both constant and variable returns-to-scale models to provide a comparative analysis across transport types. Results: The results reveal significant shifts in carbon emission efficiency between the pre- and post-EU pandemic periods. In road transport, three countries maintained efficiency, four lost efficiency, and four improved. Rail transport was relatively stable, with eight countries maintaining their scores but three declining. Air transport remained the least efficient, with only three countries maintaining efficiency post-pandemic. Maritime transport showed limited progress, with two countries consistently efficient and seven improving under select some models. These findings underscore the need for intermodal logistics strategies, investments in low-carbon technologies, and greater integration between modes to enhance EU carbon efficiency. Conclusions: Efficiency outcomes varied before and after the COVID-19 pandemic, indicating opportunities for countries to transform transportation systems to meet sustainability goals. The study provided valuable direction for policymakers and industry stakeholders in shaping post-pandemic strategies aligned with decarbonization goals.
Czasopismo
Rocznik
Strony
287--302
Opis fizyczny
Bibliogr. 42 poz., tab.
Twórcy
  • Görele Vocational School, Department of Logistic Management, Giresun Giresun University, Giresun, Turkey
  • Faculty of Business Administration and Management Sciences, International Trade and Logistics Management Department, Maltepe University, Istanbul, Turkey
autor
  • Fatsa Faculty of Marine Sciences, Department of Maritime Business Administration, Ordu University, Ordu, Turkey
Bibliografia
  • 1. Baran, J., K Górecka, A. 2019, Economic and environmental aspects of inland transport in EU countries. Economic research-Ekonomska istraživanja 32(1), 1037–1058. https://www.doi.org/10.1080/1331677X.2019.1578680
  • 2. Benítez, R., Coll-Serrano, V., Bolós, V.J. 2021, deaR-shiny: an interactive web app for data envelopment analysis. Sustainability 13(12), 6774. https://www.doi.org/10.3390/su13126774
  • 3. Borucka, A., Kozłowski, E. 2023, Modeling the dynamics of changes in CO2 emissions from Polish road transport in the context of COVID-19 and decarbonization requirements. Combustion Engines, 62, 63-70. https://www.doi.org/10.19206/CE-169697
  • 4. Boussofiane, A., Dyson, R.G., Thanassoulis, E. 1991, Applied data envelopment analysis. European Journal of Operational Research 52(1), 1–15. https://www.doi.org/10.1016/0377-2217(91)90331-O
  • 5. Cavallaro, F., Nocera, S. 2024, COVID-19 effects on transport-related air pollutants: Insights, evaluations, and policy perspectives. Transport Reviews, 44(2), 484-517. https://www.doi.org/10.1080/01441647.2023.2225211
  • 6. Chiu, Y.H., Lin, J.C., Hsu, C.C., Lee, J.W. 2013, Carbon Emission Allowances of Efficiency Analysis: Application of Super SBM ZSG-DEA Model. Polish Journal of Environmental Studies 22(3), 653–666.
  • 7. Cooper, W.W., Seiford, L.M., Tone, K. 2007, Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. New York: Springer. https://www.doi.org/10.1007/b109347
  • 8. Cooper, W.W., Seiford, L.M., Zhu, J. 2011, Handbook on Data Envelopment Analysis. New York: Springer.
  • 9. Cui, Q. 2019, Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA. Energy 180, 763–771. https://www.doi.org/10.1016/j.energy.2019.05.159
  • 10. Cui, Q., Li, Y. 2014, The evaluation of transportation energy efficiency: An application of three-stage virtual frontier DEA. Transportation Research Part D: Transport and Environment 29, 1–11. https://www.doi.org/10.1016/j.trd.2014.03.007
  • 11. Djordjević, B., Krmac, E. 2019, Evaluation of energy-environment efficiency of European transport sectors: Non-radial DEA and TOPSIS approach. Energies 12(15), 2907. https://www.doi.org/10.3390/en12152907
  • 12. European Commission 2019, European Green Deal. Available at: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en#documents (03/11/2023).
  • 13. European Commission 2023, EU transport in figures: Statistical Pocketbook. Available at: https://transport.ec.europa.eu/facts-funding/studies-data/eu-transport-figures-statistical-pocketbook_en (05/04/2024).
  • 14. Eurostat 2025, Greenhouse gas emission statistics - carbon footprints. Available at: https://ec.europa.eu/eurostat/statistics-explained/SEPDF/cache/10389.pdf (04/18/2025).
  • 15. Eurostat 2023, Country level - gross weight of goods handled in all ports. Available at: https://ec.europa.eu/eurostat/databrowser/view/mar_mg_aa_cwh/default/table?lang=en (05/04/2024).
  • 16. Fan, J., Meng, X., Tian, J., Xing, C., Wang, C., Wood, J. 2023, A review of transportation carbon emissions research using bibliometric analyses. Journal of Traffic and Transportation Engineering (English Edition) . https://www.doi.org/10.1016/j.jtte.2023.09.002
  • 17. Feng, C., Chu, F., Ding, J., Bi, G., Liang, L. 2015, Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA. Omega 53, 78–89. https://www.doi.org/10.1016/j.omega.2014.12.005
  • 18. Fetting, C. 2020, The European Green Deal. ESDN Report. Available at: https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf (04/20/2025).
  • 19. Golany, B., Roll, Y. 1989, An application procedure for DEA. Omega 17(3), 237–250. https://www.doi.org/10.1016/0305-0483(89)90029-7
  • 20. Graver, B., Zhang, K., Rutherford, D. 2019, CO2 emissions from commercial aviation 2018. Available at: https://theicct.org/sites/default/files/publications/ICCT_CO2-commercl-aviation-2018_20190918.pdf (12/12/2022).
  • 21. Guo, X.D., Zhu, L., Fan, Y., Xie, B.C. 2011, Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy 39(5), 2352–2360. https://www.doi.org/10.1016/j.enpol.2011.01.055
  • 22. IPCC 2020, Global Warming of 1.5°C. Available at: https://www.ipcc.ch/sr15/download/#full (11/11/2021).
  • 23. Kwon, D.S., Cho, J.H., Sohn, S.Y. 2017, Comparison of technology efficiency for CO2 emissions reduction among European countries based on DEA with decomposed factors. Journal of Cleaner Production 151, 109–120. https://www.doi.org/10.1016/j.jclepro.2017.03.065
  • 24. Liu, X., Hang, Y., Wang, Q., Zhou, D. 2020, Drivers of civil aviation carbon emission change: A two-stage efficiency-oriented decomposition approach. Transportation Research Part D: Transport and Environment 89, 102612. https://www.doi.org/10.1016/j.trd.2020.102612
  • 25. Marcysiak, A., Marcysiak, A. 2023, Impact of the COVID-19 epidemic on rail transport in Europe. Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach, 60(133), 39-48. https://www.doi.org/10.34739/zn.2023.60.04
  • 26. Margaret Rogers, M., Weber, W.L. 2011, Evaluating CO2 emissions and fatalities tradeoffs in truck transport. International Journal of Physical Distribution & Logistics Management 41(8), 750–767. https://www.doi.org/10.1108/09600031111166410
  • 27. Nguyen, P.H., Nguyen, T.L., Nguyen, T.G., Nguyen, D.T., Tran, T.H., Le, H.C., Phung, H.T. 2022, A cross-country European efficiency measurement of maritime transport: A Data Envelopment Analysis approach. Axioms 11(5), p. 206. https://www.doi.org/10.3390/axioms11050206
  • 28. OECD 2021, Greenhouse gas emissions. Available at: https://stats.oecd.org/Index.aspx?DataSetCode=AIR_GHG (11/6/2021).
  • 29. Patino-Artaza, H., King, L. C., Savin, I. 2024, Did COVID-19 really change our lifestyles? Evidence from transport energy consumption in Europe. Energy Policy, 191, 114204. https://www.doi.org/10.1016/j.enpol.2024.114204
  • 30. Peng, Y., Wang, W., Liu, K., Li, X., Tian, Q. 2018, The impact of the allocation of facilities on reducing carbon emissions from a green container terminal perspective. Sustainability 10(6), p. 1813. https://www.doi.org/10.3390/su10061813
  • 31. Ritchie, H., Rosado, P., Roser, M. 2020, Emissions by sector: where do greenhouse gases come from? Available at: https://ourworldindata.org/emissions-by-sector (02/24/2023).
  • 32. Song, M., Zhang, G., Zeng, W., Liu, J., Fang, K. 2016, Railway transportation and environmental efficiency in China. Transportation Research Part D: Transport and Environment 48, 488–498. https://www.doi.org/10.1016/j.trd.2015.07.003
  • 33. Song, Y.Y., Li, J.J., Wang, J.L., Yang, G.L., Chen, Z. 2022, Eco-efficiency of Chinese transportation industry: A DEA approach with non-discretionary input. Socio-Economic Planning Sciences 84, p. 101383. https://www.doi.org/10.1016/j.seps.2022.101383
  • 34. Sowlati, T., Paradi, J.C. 2004, Establishing the “practical frontier” in data envelopment analysis. Omega 32(4), 261–272. https://www.doi.org/10.1016/j.omega.2003.11.005
  • 35. Tian, N., Tang, S., Che, A., Wu, P. 2020, Measuring regional transport sustainability using super-efficiency SBM-DEA with weighting preference. Journal of Cleaner Production 242, p. 118474. https://www.doi.org/10.1016/j.jclepro.2019.118474
  • 36. Tone, K. 2001, A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research 130(3), 498–509. https://www.doi.org/10.1016/S0377-2217(99)00407-5
  • 37. Tongwane, M., Piketh, S., Stevens, L., Ramotubei, T. 2015, Greenhouse gas emissions from road transport in South Africa and Lesotho between 2000 and 2009. Transportation Research Part D: Transport and Environment 37, 1–13. https://www.doi.org/10.1016/j.trd.2015.02.017
  • 38. UNDP 2023, What are the Sustainable Development Goals? Available at: https://www.undp.org/sustainable-development-goals (06/12/2023).
  • 39. UNFCC 1998, Kyoto Protocol to the United Nations Framework. Available at: https://unfccc.int/resource/docs/convkp/kpeng.pdf (03/01/2021).
  • 40. Zhang, N., Zhou, P., Kung, C.C. 2015, Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renewable and Sustainable Energy Reviews 41, 584–593. https://www.doi.org/10.1016/j.rser.2014.08.076
  • 41. Zhao, P. et al. 2022, China’s transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model. Energy 238, p. 121934. https://www.doi.org/10.1016/j.energy.2021.121934
  • 42. Zhou, G., Chung, W., Zhang, X. 2013, A study of carbon dioxide emissions performance of China’s transport sector. Energy 50, 302–314. https://www.doi.org/10.1016/j.energy.2012.11.045
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae0b4888-c04a-43c8-93dc-5680289e6dd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.