PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Material characteristic of an innovative stent for the treatment of urethral stenosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The appropriate development and customisation of the stent to the urethral tissues requires the determination of many factors such as strength and degradation. Given the distinctive conditions of urethral tissues, it is important that the design of the stent be properly developed. The selection of a stent material requires knowing its material characteristics and verifying that they are suitable for the future implantation site. In the present study, the development of a polydioxanone (PDO)-based stent was undertaken. The PDO material was fabricated using an additive technique – 3D printing. Then, in vitro tests were performed to determine the degradation time of the material under conditions simulating an aggressive urinary environment. The changes in the parameters of mechanical properties before and after the degradation period were determined, and the changes in the structure of the material before and after degradation were observed. Numerical analysis was performed for the proposed stent design. The results showed that PDO has good mechanical properties, but its degradation time is too short to be used in a urethral stent. Among the innovations of the studies conducted are bending strength tests, which is not a frequently considered aspect so far.
Rocznik
Strony
477--484
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Biomedical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
  • Faculty of Mechanical Engineering, Department of Biomedical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
  • Faculty of Mechanical Engineering, Department of Biomedical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
  • Faculty of Mechanical Engineering, Department of Biomedical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
Bibliografia
  • 1. Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tai-lor made natural and synthetic grafts for precise urethral reconstruc-tion. J. Nanobiotechnology. 2022;20(392):1–23. https://doi.org/10.1186/s12951-022-01599-z
  • 2. Xu K, Han Y, Huang Y, Wei P, Yin J, Jiang J. The application of 3D bioprinting in urological diseases. Mater. Today Bio. 2022;16 (100388):1–17. doi: 10.1016/j.mtbio.2022.100388
  • 3. Verla W, Oosterlinck W, Spinoit AF, Waterloos M. A Comprehensive Review Emphasizing Anatomy, Etiology, Diagnosis, and Treatment of Male Urethral Stricture Disease. BioMed Res. Int. 2019;2019: 9046430:1–20. doi: 10.1155/2019/9046430
  • 4. Lazzeri M, Sansalone S, Guazzoni G, Barbagli G. Incidence, Caus-es, and Complications of Urethral Stricture Disease. Eur. Urol. Suppl. 2016;15(1):2–6. 10.1016/j.eursup.2015.10.002
  • 5. Yao HJ, Wei ZW, Wan X, Tao YC, Zhang DC, Wang Z, Xie MK. Three new experimental models of anterior urethral stricture in rab-bits. Transl. Androl. Urol. 2022;11(6):761–772. doi: 10.21037/ tau-22-104
  • 6. Klekiel T, Mackiewicz A, Kaczmarek-Pawelska A, Skonieczna J, Kurowiak J, Piasecki T, Noszczyk-Nowak A, Będziński R. Novel de-sign of sodium alginate based absorbable stent for the use in urethral stricture disease. J. Mater. Res. Technol. 2020;9(4):9004–9015. https://doi.org/10.1016/j.jmrt.2020.06.047
  • 7. Kurowiak J, Mackiewicz A, Klekiel T, Będzński R. Evaluation of Selected Properties of Sodium Alginate-Based Hydrogel Material-Mechanical Strength, μDIC Analysis and Degradation. Materials. 2022;15(3):1–15. https://doi.org/10.3390/ma15031225
  • 8. Mackiewicz A, Klekiel T, Kurowiak J, Piasecki T, Będziński R. De-termination of Stent Load Conditions in New Zealand White Rabbit Urethra. J. Funct. Biomater. 2020;11(4):1–9. https://doi.org/10.3390/jfb11040070
  • 9. Farzamfar S, Elia E, Chabaud S, Naji M, Bolduc S. Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int. J. Mol. Sci. 2022;23(18):1–37. https://doi.org/10.3390/ijms231810519
  • 10. Basikn LS, Constantinescu SC, Howard PS, Mcaninch JW, Ewalt DH, Duckett JW, Snyder HM, Macarak EJ. Biomechanical character-ization and quantitation of the collagenous components of urethral stricture tissue. J. Urol. 1993;150:642–647. 10.1016/s0022-5347(17)35572-6
  • 11. Goel A, Goel A, Jain A, Singh BP. Management of panurethral strictures. Indian J. Urol. 2011;27(3):378–384. 10.4103/0970-1591.85443
  • 12. Mundy AR, Andrich DE. Urethral strictures. BJU International. 2010;107(1):6–26. doi: 10.1111/j.1464-410X.2010.09800.x.
  • 13. Engel O, Soave A, Rink M, Fisch M. Reconstructive Management with Urethroplasty. European Association of Urology. 2016;15(1):13–16. 10.1016/j.eursup.2015.10.004
  • 14. Pudełko P. Rekonstrukcja cewki moczowej - uretroplasty-ka/Reconstruction of the urethroplasty. Przegląd Urologiczny. 2016;96.
  • 15. Pastorek D, Culenova M, Csobonyeiova M, Skuciova V, Danisovic L, Ziaran S. Tissue Engineering of the Urethra: From Bench to Bedside. Biomedicines. 2021:9(12):1–12. 10.3390/biomedicines9121917
  • 16. Cheng L, Li S, Wan Z, Huang B, Lin J. A brief review on anterior urethral strictures, Asian J Uro. 2018;5(2):88–93. 10.1016/j.ajur.2017.12.005
  • 17. Kurowiak J, Kaczmarek-Pawelska A, Mackiewicz A, Będziński R. Analysis of the Degradation Process of Alginate-Based Hydrogels in Artificial Urine for Use as a Bioresorbable Material in the Treatment of Urethral Injuries. Processes. 2020;8(3):1–11. https://doi.org/10.3390/pr8030304
  • 18. Cunnane EM, Davis N, Cunnane CV, Lorentz KL, Ryan AJ, Hess J, Weinbaum JS, Walsh MT, O’Brien FJ, Vorp DA. Mechanical, compo-sitional and morphological characterisation of the human male ure-thra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials. 2021;269(120651):1–31. 10.1016/j.biomaterials.2021.120651
  • 19. Li G, Li Y, Lan P, Li J, Zhao Z, He X, Zhang J, Hu H. Biodegradable weft-knitted intestinal stents: Fabrication and physical changes inves-tigation in vitro degradation. J. Biomed. Mater. Res. Part A. 2014;102(4):982–990. https://doi.org/10.1002/jbm.a.34759
  • 20. Loskot J, Jezbera D, Zmrhalová ZO, Nalezinková M, Alferi D, Lelkes A, Voda P, Andrýs R, Myslivcová-Fučiková A, Hosszŭ T, Bezrouk A. A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on Raman Spectroscopy Validation. Polymers. 2022;14(5):1–19. https://doi.org/10.3390/polym14050938
  • 21. Zilberman M, Eberhart RC. Drug-Eluting Bioresorbable Stents for Various Applications. Annu. Rev. Biomed. Eng. 2006;8:153–180. https://doi.org/10.1146/annurev.bioeng.8.013106.151418
  • 22. Zhang W, Kanwal F, Fayyaz M, Rehman UR, Wan X. Efficacy of Biodegradable Polydioxanone and Polylactic Acid Braided Biode-gradable Biliary Stents for the Management of Benign Biliary Stric-tures. Turk J Gastroenterol. 2021;32(8):651–660. 10.5152/tjg.2021.201174
  • 23. Kwon C, Son JS, Kim KS, Moon JP, Park S, Jeon J, Kim G, Choi SH, Ko KH, Jeong S, Lee DH. Mechanical properties and degradation process of biliary self-expandable biodegradable stents. Dig Endosc. 2021;33(7):1158–1169. doi: 10.1111/den.13916
  • 24. Bezrouk A, Hosszu T, Hromadko L, Olmrova-Zmrhalova Z, Kopecek M, Smutny M, Krulichova IS, Macak JM, Kremlacek J. Mechanical properties of a biodegradable self-expandable polydioxanone mono-filament stent: In vitro force relaxation and its clinical relevance. PLOS ONE. 2020;15(7):1–16. https://doi.org/10.1371/journal.pone.0235842
  • 25. Adolfsson KH, Sjőberg I, Hőglund OV, Wattle O, Hakkarainen M. In Vivo Versus In Vitro Degradation of a 3D Printed Resorbable Device for Ligation of Vascular Tissue in Horses. Macromol. Biosci. 2021;21(10):1–12. https://doi.org/10.1002/mabi.202100164
  • 26. Saska S, Pilatti L, Santos de Sousa Silva E, Nagasawa MA, Câmara D, Lizier N, Inger E, Dyszkiewicz-Konwińska M, Kempisty B, Tunchel S, Blay A, Shibil JA. Polydioxanone-Based Membranes for Bone Regeneration. Polymers. 2021;13(11):1–16. https://doi.org/10.3390/ polym13111685
  • 27. Fathi P, Capron G, Tripathi I, Misra S, Ostadhossein F, Selmic L, Rowitz B, Pan D. Computed Tomography-Guided Additive Manufac-turing of Personalized Absorbable Gastrointestinal Stents for Intesti-nal Fistulae and Perforations. Biomaterials. 2020,228(119542):1–36. doi: 10.1016/j.biomaterials.2019.119542
  • 28. Park JH, Song HY, Shin JH, Kim JH, Jun EJ, Cho YC, Kim SH, Park J. Polydioxanone Biodegradable Stent Placement in a Canine Ure-thral Model: Analysis of Inflammatory Reaction and Biodegradation. J Vasc Interv Radiol. 2014;25(8):1257–1264. 10.1016/j.jvir.2014.03.023
  • 29. Stehlik L, Hytych V, Letackova J, Kubena P, Vasakova M. Biode-gradable polydioxanone stents in the treatment of adult patients with tracheal narrowing. BMC Pulm. Med. 2015;15(164):1–8 10.1186/s12890-015-0160-6
  • 30. Zamiri P, Kuang Y, Sharma U, Ng TF, Busold RH, Rago AP, Core LA, Palasis M. The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries. Biomaterials. 2010;31(31):7847–7855. 10.1016/j.biomaterials.2010.06.057
  • 31. Kurowiak J, Kaczmarek-Pawelska A, Mackiewicz A, Baldy-Chudzik K, Mazurek-Popczyk J, Zaręba Ł, Klekiel T, Będziński R. Changes in the Mechanical Properties of Alginate-Gelatin Hydrogels with the Ad-dition of Pygeum africanum with Potential Application in Urology. Int. J. Mol. Sci. 2022;23(18):1–16. https://doi.org/10.3390/ijms231810324
  • 32. Chutipongtanate S, Thongboonnkerd V. Systematic comparisons of artificial urine formulas for in vitro cellular study, Anal. Biochem. 2010;402(1):110–112. 10.1016/j.ab.2010.03.031
  • 33. Gil-Castell O, Badia JD, Bou J, Ribes-Greus A. Performance of Polyester-Based Electrospun Scaffolds under In Vitro Hydrolytic Conditions: From Short-Term to Long-Term Applications. Nano-materials. 2019;9(5):1–19. https://doi.org/10.3390/nano9050786
  • 34. Zhao F, Sun J, Xue W, Wang F, King MW, Yu C, Jiao Y, Sun K, Wang L. Development of a polycaprolactone/poly(p-dioxanone) bio-resorbable stent with mechanically self-reinforced structure for con-genital heart disease treatment, Bioact. Mater. 2021;6(9):2969–2982. https://doi.org/10.1016/j.bioactmat.2021.02.017
  • 35. Tian Y, Zhang J, Cheng J, Wu G, Zhang Y, Ni Z, Zhao G. A poly(L-lactic acid) monofilament with high mechanical properties for applica-tion in biodegradable biliary stents. J. Appl. Polym. Sci. 2020;138(2):1–8. https://doi.org/10.1002/app.49656
  • 36. Conderman C, Kinzinger M, Manuel C, Protsenko D, Wong BJF. Mechanical analysis of cartilage graft reinforced with PDS plate. Laryngoscope. 2013;123(2):339–343. doi: 10.1002/lary.23571
  • 37. Loskot J, Jezbera D, Bezrouk A, Doležal R, Andrýs R, Francová V, Miškář D, Myslivcová-Fučiková A. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Bi-odegradation. Materials. 2021;14(18):1–16. https://doi.org/10.3390/ma1
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae08bf84-fb47-43c8-b144-861ff76cec98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.