
ARTIFICIAL SATELLITES, Vol. 59, No. 2 – 2024
DOI: 10.2478/arsa-2024-0004

NEURAL NETWORK APPLIED TO TELESCOPE POINTING
INACCURACY MODEL

Vitaliy ZHABOROVSKYY, Myhailo MEDVEDSKY, Vasyl CHOLIY,
Victor PAP, Viachelsav SEMENENKO

Main Astronomical Observatory, Kyiv, Ukraine

e-mail: zhskyy@mao.kiev.ua

ABSTRACT. In the course of satellite observations using satellite laser ranging (SLR), a key
task is pointing the telescope with high precision. Positioning the steering system’s mechanical
parts with zero error is impossible. Accordingly, we must analyze and account for pointing errors
by incorporating the telescope mounting errors themselves into the modeling error. Such models
are far from trivial owing to the factors such as satellite azimuth, altitude, perhaps distance, or
meteorological data.

In this article, we explain how the data for the telescope pointing inaccuracy model (TIM) was
collected and how a neural network was used to build a very precise TIM for the Golisiiv 1824
SLR station in Kyiv.

We have focused our efforts on the suggested approach’s positive aspects based on our experience
of using it to find practical solutions. Our practical recommendations may also be interesting
for anyone working with hardware, especially in analyzing their errors. The key proof of the
effectiveness of the approach is the serious increase in the number of satellites successfully
tracked, especially for “blind” paths, when the satellite is not visible to the observer through the
telescope guide.

Keywords: telescope pointing model, neural network, satellite laser ranging

1. INTRODUCTION

The Golisiiv 1824 SLR station in Kyiv uses three reflectors and one collimator on a common
setup. The direction of the telescope axis is given in horizon coordinates with its azimuth A –
accounting for the northern bearing, – and height or altitude h – being the angle between the
horizon and the axis direction.

The steering subsystem uses absolute digital angle sensors with 21 binary digits. This means
that for a whole 360◦ circle, the sensor readouts give us (without any additional steps and
calculations) the azimuth and altitude of the telescope axis with an approximate precision of 0.6
arcsec (360◦/221 ∗ 3600 ∼ 0′′.62).

Hardware issues and shifting of the sensor zeroes add some errors in pointing. Thus, if we need
to point the telescope axis at Ae, he, we must instead point it toward Ao, ho. The differences
∆A = Ae − Ao and ∆h = he − ho are called the telescope inaccuracy model (TIM). The model
depends on Ae, he, the satellite orbit, and some other parameters such as meteorological data.

c© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the
Article is properly cited.

https://creativecommons.org/licenses/by/4.0/

Preselection of the model parameters may not be obvious, so iterations are essential. In the first
step, the model should provide us with the shifting of a sensor’s zero, after which we will then
be able to analyze finer details.

Over time, due to technical maintenance issues and lower telescope mount and steering system
quality, the model loses accuracy, and blurs and other issues may appear. We must keep our
attention on the model and constantly work on its precision. Maintaining the model, including
its rebuilding after collecting new data, is a continuous task.

The main criteria for pointing quality are the ability to receive signals from non visible satellites
along with the number of successful observations. There are plenty of visible satellites during
summer, with non visible satellites mostly being observed during winter. As such, the main
idea is to collect data from visible satellite observation and have updated TIM ready for the new
winter season.

The first generation of inaccuracy models for SLR telescopes was created based on a classical
instrument theory. Bending, axes non perpendicularity, and zero shift were successfully modeled
(Butkiewicz et al., 1994).

The first TIM for the Golisiiv 1824 SLR station in Kyiv was based on stellar observations
(Medvedsky and Suberlak, 2002). The model worked well enough as a first approximation, but
there were two obvious drawbacks: special time needed to be devoted for observations of the
stars, cutting out time for satellites, and the model was built for observations of stars despite
the telescope being assigned for satellite observation. In the latter case, there is a planetary
aberration that needs special attention and is absent in stellar observation.

The second version of TIM was the model based on satellite observations (Zhaborovskyy et
al, 2013). In this case, the major disadvantage in the first place is the necessity of serious
preliminary data analysis and the need to build polygonal and trigonometric formulas. Despite
being quite trivial from a mathematical point of view, the model proved to be quite nontrivial
during preparation and maintenance.

The idea of the third (the subject of the article) model arose from our assumption that no particular
precision is gained by the model from its mathematical content, so we decided to concentrate
on the most valuable practical items: the model must be as easy and fast as possible during
its preparation, usage, and derived calculations. Maintaining and changing the model if a new
observation is added must not be difficult either. Our opinion is that the neural network is good
for this – we care little about which formulary is inside the model, and we are just interested in
having result values for given input parameters and in immediate utilization (maybe in real time)
of the model’s latest sensor readouts. There is no reason to compare the precision of previous
models with that of the newest one because in practice, the most important criterion is ease and
usage of model building.

2. DATA PREPARATION

Observation of the satellites starts from building its ephemeris. It is done once per day, mostly in
the evening before the observation session starts. Having calculated it, we can point the telescope
using the calculated data. During evening and morning sessions, most of the satellites are in
sunlight and can be seen through the telescope guide. If necessary, an operator can manually
correct the telescope pointing. For each successful observation the sensor readout Ao, ho, their
time changes, and ephemeris satellite position Ae, he is saved. We get the satellite’s position
according to the ephemerides and the position sensors, and the discrepancy of these positions

56

makes up the telescope pointing error. These data are the basis for TIM creation and can be
collected while the main observing program is running.

The accuracy of the measurement of pointing errors depends on the accuracy of the sensor
(0.6 arcseconds), the accuracy of the ephemeris (1 – 2 arcseconds), and the width of the laser
beam (10 arcseconds), hitting a satellite that guarantees signal reception. Based on the given
values, the width of the laser beam is dominant and more precise modeling is not required. Of
course, a situation is possible when the accuracy of the ephemeris is lower, but only for specific
satellites/cases, and we do not use such data for modeling errors.

Most satellites are not visible in the middle of the night, and an operator must scan the sky in
the vicinity of the ephemeris point until the satellite is caught. The better the TIM, the less time
wasted scanning. Ephemeris data and sensor readouts are the source of the data for the TIM.
The TIM itself is an approximation of their differences. An early model (Zhaborovskyy, 2013)
consisting mostly of trigonometric series was used at our SLR station but had poor precision
(near 150 arcsec for both axes). Its level of precision was only satisfactory for some particular
satellite paths. The model was quite hard to manage.

In Figure 1, the differences in azimuth and altitude for the year 2023 are presented for all paths
of all satellites. The figure shows approximately 13,000 points with the mean value removed
and scaled to [0...1]. The SLR setup can only work with altitudes [20◦...75◦] so that the gap
around the zenith is clearly visible. Absolute corrections for azimuth: [−0.24...0.13] , altitude:
[−0.09..0.07] degrees.

0°

45°

90°

135°

180°

225°

270°

315°
11°

23°
34°

46°
57°

69°
80°

azimutal corrections
0°

45°

90°

135°

180°

225°

270°

315°
11°

23°
34°

46°
57°

69°
80°

altitude corrections

0.0 0.2 0.4 0.6 0.8 1.0
normalized correction

Figure 1. Raw source data for the model. Approximately 13,000 points are plotted in the horizon
coordinate system. Normalized corrections are shown in different colors.

57

3. NEURAL NETWORK USAGE

According to the Cybenko theorem (Cybenko, 1989), arbitrary continuous function f of real
argument can be approximated with any precision by the sum:

G(~x, ~w, α, θ) =
N∑
i=1

αiϕ(~wi
T~x+ θi), (1)

where
ϕ – some scalar function, see below;
~x – function arguments;
~w, θ, α – parameters;
N – level of approximations (layers).

Function G(~x, ~w, α, θ) can be implemented by a feed-forward artificial neural network (no loops
allowed) with a minimum of one hidden layer. In the context of this work, the main advantage
lies in the simplicity of usage without deep analysis of the neural network’s mathematical model.

A neural network is built from layers of artificial neurons. The first of the layers is for input,
and the number of neurons in it being the number of inputs. The final layer is for output, and
it contains an arbitrary amount of neurons corresponding to as many outputs as we need. The
neural network can contain as many hidden layers between the input and the final ones as needed.
The output from one layer becomes the next layer’s input. Achieving the ideal number of hidden
layers is a matter of investigation.

It is worth noting that any preselected ϕ must be a nonlinear, smooth monotonous increasing
function. Generally, it is called “activation function” and any non linearity of the final result
results from their usage. Various layers of the neural network without activation functions can be
joined, and the network may be represented only by the hidden layer.

Let us denote the number of neuron inputs as M. In this case, the neuron is representable as
follows:

y = ϕ(
M∑
j

xjwj + θi), (2)

where
xj – input data;
wj – weights;
θi – shift;
y – output data;
ϕ – neuron activation function.

The general case (2) has nothing to do with the physics of the model, but we can use them given
that we are solely interested in the numbers. The other task here is to preselect N– a number of
layers and ϕ. There is no quick and universal fix for it. We have to do some investigation and
find them from the results of numerical experiments. It adds the phenomenology to the neural
network approach and shifts it away from the physics of the model.

Search for optimal wj and θ is “model learning”. In general cases, optimizing some other “cost
function” (or “lost function”) C(f,G) in N -dimension parameter space will be required. The
minimum of the cost function gives us some understanding of the approximation precision. The
most trivial variant is standard deviation of ephemeris values from sensor readouts like in least

58

squares method. However, the field of choice for cost function is quite huge. The method of cost
function optimization is again a matter of choice, and it is most frequently gradient descent.

We use Python (version 3.9) with Keras library (version 2.11) (Chollet et al., 2015). All necessary
instruments for creating the network, optimization, and precision control are included in the
library.

To build the neural network for optimization of a given function, one should follow these steps:
preselect a number of inputs, outputs, hidden layers, and number of neurons for each layer.
For each layer, we should preselect “activation functions” and define “cost function”. The
latter will help us determine the precision of the approximation. A mathematical algorithm for
optimization need to be preselected too. Concerning neural networks, tasks for data fitting are
called “regression”.

Let us discuss some recommendations for building networks:

• Use “dense” layers; layers where each neuron has connections with all neurons of the two
neighboring layers; this is the best choice for regression case.

• Do not use too many neurons; these sorts of networks are prone to “overfitting”, an
undesirable machine learning behavior that occurs when the machine learning model gives
accurate predictions for training data but not for new data.

• Each neuron of the first layer resolving one feature of the input data; the next layer’s
neurons combine the features found in the previous layer; the flexibility of the model
depends on the number of layers with each neuron of the last layer resolving one feature
of output data.

• More layers with an adequate number of neurons in them are generally better than an
adequate number of layers with lots of neurons.

• Since this is regression, the neural network models data within the training interval better
than outside it.

4. RESULTS AND CONCLUSIONS

4.1. Results

As a result, we want to create a model that uses azimuth and altitude as inputs and generates
two corrections – one for azimuth and the other for altitude. Sines and cosines are used instead
of angles to avoid ambiguity at the 0 – 360 degree azimuth break points; the model therefore
has four inputs. Two parameters are expected as a result of the model, the azimuth and altitude
corrections.

The general structure of the regression neural network used for TIM is shown in Table 1. This
structure is the result of our experiments and was created based on the above recommendations.
Each layer has a type, number of neurons (shape), and activation function.

The first layer is used as input and has four neurons. It is possible to raise the number of inputs
in the case of velocities or other parameters being required as inputs. The activation function is
not required for this layer.

The last layer has two neurons as a number of model outputs. The other layers are dense and
hidden. The number of these layers and shapes was sampled at the base of recommendations
from the previous section.

59

Nonlinearities are introduced in the model through activation functions for each layer. We used
activation through:

• ReLU (Rectified Linear Units): ϕ(z) = max(0, z). It is recommended for use in hidden
layers to avoid overfitting and as simple to implement.

• Tanh: ϕ(z) = tanh(z). Hyperbolic tangent. Very useful as the first activator.

• Sigmoid: ϕ(x) = 1/(1 + e−x). Sigmoid function, activator of the last layer to build the
final result. This is why scaling of the input data to [0..1] interval and then unscaling the
final result is necessary. Mean values are also to be subtracted from the input data.

The final decision on which activation function to choose is a creative decision and must be
made as a result of experiments.

Keras library contains all necessary tools for layers, activation, and cost function creation.

Table 1. General structure of the TIM network, each row is a layer.
Total number of trainable parameters is 19,762.

Layer type Number of neurons Number of parameters Activation
InputLayer 4 0 None

Dense 64 320 tanh
Dense 64 4160 relu
Dense 64 4160 relu
Dense 64 4160 relu
Dense 32 2080 relu
Dense 32 1056 relu
Dense 32 1056 relu
Dense 32 1056 relu
Dense 16 528 relu
Dense 16 272 relu
Dense 16 272 relu
Dense 16 272 relu
Dense 8 136 relu
Dense 8 72 relu
Dense 8 72 relu
Dense 8 72 relu
Dense 2 18 sigmoid

For cost functions, we used standard deviation and as optimizer, and used the Nadam algorithm
in the default configuration from the Keras library.

It is worth noting that we need a criterion for when to stop the teaching iterations. A quite simple
and even trivial criterion is to limit the number of iterations, but we cannot be certain that the
best result has been found. The better criterion is testing if the result at the end of the current
iteration has a lower deviation than the one from the previous iteration.

Keras library has all the necessary functionalities to do this: at the end of the iteration, we can
estimate the quality of the result and stop teaching if a criterion has been satisfied. The default
cost function is the standard deviation of real values and the ones calculated by the model for
azimuth and altitude separately. Training stops if the cost function fails to exceed a threshold
value for a given amount of consecutive iterations.

60

Good practice is to use a portion of input data for testing. These data should not be used for
training and are only intended for testing and quality estimation. When preparing TIM, every
tenth point of the input set was left for testing. So, for 13,000 points of input data, 1,300 were
used for testing and quality estimation. A very useful criterion for iteration is a comparison of
cost function for test and training data. If these metrics diverge from the iterations, the model
overfits and its parameter should be changed.

It is worth noting that we need a criterion for when to stop the teaching iterations. A quite simple
and even trivial criterion is to limit the number of iterations, but we cannot be assured that we
found the best result. The better criterion is testing if the result at the end of the current iteration
has a lower deviation than the one from the previous iteration.

Keras library has all the necessary functionalities to do it: at the end of the iteration, we can
estimate the quality of the result and stop teaching if a criterion is satisfied. The default lost
function is the standard deviation of real values and the ones calculated by the model for azimuth
and altitude separately. Training stops if for some amount of consecutive iterations the cost
function does not exceed some threshold values.

Good practice is to use a portion of input data for testing. These data should not be used for a
model training. They are intended only for testing and quality estimation. When preparing TIM,
every tenth point of the input set was left for testing, so from 13,000 points of input data, there
were 1300 used for testing and quality estimation. The very useful criterion for iteration is a
comparison of cost function for test and training data. If these metrics diverge with the iterations,
the model overfits and its parameter should be changed.

0 20 40 60 80 100 120 140
epoch

20

40

60

80

100

az
im

ut
h_

st
d,

 ''

model azimuth_std: train and validation
train
validation

0 20 40 60 80 100 120 140
epoch

20

22

24

26

28

30

32

34

al
tit

ud
e_

st
d,

 ''

model altitude_std: train and validation
train
validation

Figure 2. Cost function (standard deviation) for corrections to azimuth (left) and altitude (right)
depending on learning iteration number (epoch)

In Figure 2, cost function depending on the iteration number is shown. The blue line connects
the points for training data, and the orange ones show test data. No overfitting was detected in
this case as both lines behave similarly.

For our station (Golisiiv 1824 in Kyiv), precision in pointing the telescope is limited by
mechanical issues and laser beam width (10 arcseconds in our case). It sets the lower limit for
model precision – 10 arcsec for each angle. We were very lucky and our model sometimes
shows us much better precision in the sequence of iterations. The neural network from Table 1
achieves the necessary precision in less than 1,500 training iterations. It requires nearly 30
minutes on a usual laptop without CUDA. However, practical usage of the model led to high
frequency fluctuations in the telescope guiding system. This indicated some overteaching, which

61

is bad for precise pointing. That is why we added one empirical criterion and stopped teaching
if the precision fell to 20 arcseconds. High-frequency fluctuations vanished but the precision
of guiding left as well. We would lose the satellite for a very short time, but it could be easily
found again because in this case, the corrections are very smooth and easily forecast by telescope
mechanics. Only 150 iterations are necessary in this case (less than 10 minutes of machine time
on a usual laptop).

150 100 50 0 50
0

20

40

60

80

100

120

deltas for azimuth
mu = -1.98'', std = 18.74''

50 0 50 100 150
0

25

50

75

100

125

150

175

200

deltas for altitude
mu = 7.85'', std = 20.36''

Figure 3. Residual distribution of modeled and original corrections

In Figure 3, histograms of differences between original and modeled corrections and the best fit
of the normal distribution to them are shown. The histograms were built on the test data, so the
standard deviations are not precisely 20 arcsec. The altitude histogram is slightly wider than the
one for azimuth. We need to devote time considering the planetary aberration for satellites in
our next steps. If the normality of the residuals is not fully satisfied, it means that there is some
other error not being taken into account, refraction inconsistencies, for example. The practice

of the model usage allowed us to conduct more observations of the satellites, especially those
observed in a blind mode. International Laser Ranging Service statistics for station 1824 and
Lageos and Lares show a sharp rise from 201 observations in 2021 and 46 in 2022 (station
reconstruction) to 4327 in 2023 (https://ilrs.gsfc.nasa.gov/network/system_
performance/global_report_cards/monthly/).

At the latest step, we save the model on an external HDD in the format generally used for works
with neural models. The model is easily downloadable into any other code assigned to use
the model. No dependency on programing language. Before observation, the corrections are
calculated with the model, the ephemeris values are corrected, and those new values are in turn
used for telescope pointing. The correction calculation requires less than 10 seconds for one
ephemeride (300 — 1000 pairs of coordinates).

4.2. Conclusions

The neural network model is very practical and useful for SLR observations. The telescope
steering system works with improved precision. This results in better pointing and a growing
number of successful locations. Now, we can observe the satellites in a blind mode when the
satellite is invisible on the operator console and manual correction is not possible.

The time for learning is the main time consumer of the neural models in general. This is the
main area where the model needs polishing, perhaps by adding CUDA support. But that 30 min
for model training on a usual laptop is not critical in our case.

62

https://ilrs.gsfc.nasa.gov/network/system_performance/global_report_cards/monthly/
https://ilrs.gsfc.nasa.gov/network/system_performance/global_report_cards/monthly/

Another problem with neural models is the absence of general recommendations on model
structure, activation functions, optimization methods, goodness metrics, etc. It took serious time
to find the optimal configuration by experimenting with the Keras user interface. This part of the
work looks more like art than science.

The cost function has many dimensions, and sometimes, the optimization runs into a local
minimum. Different solutions are generated in these cases. Sometimes, we cannot reproduce the
same final numbers during two successive training experiments. But in any case, the statistical
values, standard deviation, for example, are within 10 arcsec and are very similar.

We did not analyze the influence of source point distribution on the quality of the result. This is
one of our next steps. Also, we did not determine the minimum amount of training data to have a
good result. One can only note that 10k points are quite enough in our case.

Having some expertise in the usage of this type of telescope-pointing accuracy model, we
recommend neural models for investigating the accuracy of your devices.

REFERENCES

E. Butkiewicz, S. Schillak, J.K. Latka (1994) Mount error model of BOROWIEC-2 SLR system
Artificial Satellites, Vol.29., No 3., 119 - 128.

F.Chollet and team. (2015) Keras, https://keras.io.

G.Cybenko (1989) Approximation by Superpositions of a sigmoidal function, Mathematics of
Control, Signals and Systems, V.2(4), 303-314.

M.Medvedsky, V.Suberlak (2002) Mount errors model for the Kyiv SLR station, Artificial
Satellites, Journal of Planetary Geodesy, Vol. 37, No. 1, 3-16.

V.Zhaborovskyy, V.Choliy, M.Medvedskyy, V.Pap (2013) Telescope inaccuracy model based
upon satellite laser ranging data, Advances in Astronomy and Space Physics, Vol.3, N.1, 63-65,
2013.

Received: 2024-02-07

Reviewed: 2024-04-23 (undisclosed name); 2024-05-05 (K. Salmins);

2024-05-14 (undisclosed name)

Accepted: 2024-06-17

63

