PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From Sanitation to Clean Energy: Biogas Potential of Three Organic Wastes Collected in and Around Douala City (Cameroon)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Waste management is a major concern in large cities under heavy demographic pressure. Landfill, the oldest form of solid waste management is gradually being replaced by new technics such as biomethanisation. With the purpose of contributing to the achievement of one of the Sustainable Development Goals, particularly SDG7 (affordable and clean energy), the aim of this study is to assess the fermentable fraction of organic wastes into biogas. This survey was carried out in and around Douala city. Biological material consisted of water hyacinth (WH), household wastes (HW), oil palm wastes (OPW) and a mixture of these three substrates (MS) was collected and introduced with cow dung used as inoculum in a biodigester. Some physico-chemical parameters of substrates were determined. Results have shown that substrates used have a pH around neutral. The C/N ratio has shown an excess of nitrogen in the WH, but a deficit in the OPW and MS. The household wastes have presented an ideal ratio for the biological stability of the anaerobic digestion system (21.153±0.695). At the end of the experimentation, a large degradation of organic matter has been observed with COD decrease rates of 37.55±0.12% (WH), 45.46±0.60% (HW), 48.27±0.34% (OPW) and 46.71±0.26% (MS). All air chambers were inflated and the combustion has shown a blue flame, proof of very high proportions of methane in the flammable biogas. A sanitation process has led to clean energy production.
Słowa kluczowe
Rocznik
Strony
84--98
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Department of Plant Biology and Physiology, Faculty of Sciences, The University of Douala, P.O. Box 24157 Douala, Cameroon
  • Department of Biochemistry, Faculty of Sciences, The University of Douala, P.O. Box 24157 Douala, Cameroon
  • Department of Aquatic Ecosystems Management, Institute of Fisheries and Aquatic Sciences at Yabassi, The University of Douala, P.O. Box 7236 Douala, Cameroon
  • Department of Processing and Quality Control of Fisheries Products at Yabassi, The University of Douala, P.O. Box 7236 Douala, Cameroon
  • Department of Fisheries Management, Institute of Fisheries and Aquatic Sciences at Yabassi, The University of Douala, P.O. Box 7236 Douala, Cameroon
  • Department of Biological Sciences, Faculty of Sciences, The University of Maroua, P.O. Box 46 Maroua, Cameroon
  • Department of Plant Biology and Physiology, Faculty of Sciences, The University of Douala, P.O. Box 24157 Douala, Cameroon
  • Department of Plant Biology and Physiology, Faculty of Sciences, The University of Douala, P.O. Box 24157 Douala, Cameroon
  • Department of Biochemistry, Faculty of Sciences, The University of Douala, P.O. Box 24157 Douala, Cameroon
autor
  • Department of Plant Biology and Physiology, Faculty of Sciences, The University of Douala, P.O. Box 24157 Douala, Cameroon
Bibliografia
  • 1. Afilal M.E., Moncif M., Benyamna, A. 2007. Valorisation des déchets organiques par fermentation méthanique. Revue des Energies Renouvelables, 9–12. (in French).
  • 2. Afilal M.E., Belkhadir N., Daoudi H., Elasri O. 2013. Methanic fermentation of different organic substrates. Journal of Materials and Environmental Science, 4(1), 11–16.
  • 3. Afilal M.E., Elasri O., Merzak Z. 2014. Organic waste characterization and evaluation of its potential biogas. Journal of Materials and Environmental Science, 5(4), 1160–1169.
  • 4. Akindele A.A., Sartaj M. 2017. The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste. Waste Management, 71, 757–766. https://doi.org/10.1016/j. wasman.2017.07.026
  • 5. Akrout J. 1992. Etude énergétique de la fermentation méthanique des fientes de volailles. Optimisation des facteurs influents et modélisation du système. [Thèse de Doctorat de spécialité]. Tunis : Ecole Nationale des Ingénieurs de Tunis. (in French).
  • 6. Almansour E. 2011. Bilans énergétiques et environnementaux de filières biogaz: Approche par f ilière-type. [Thèse de Doctorat]. Bordeaux: Université de Bordeaux I. (in French).
  • 7. Almoustapha O., Millogo J.R., Kenfack S. 2008. Production de biogaz et de compost à partir de la jacinthe d’eau pour un développement durable en Afrique sahélienne. Vertigo, 8(1), 1–8. https://doi.org/10.4000/vertigo.1227 (in French).
  • 8. Angelidaki I., Ellegaard L. 2003. Codigestion of manure and organic wastes in centralized biogas plants; status and future trends. Applied Biochemistry and Biotechnology, 109(1–3), 95–106. https://doi.org/10.1385/abab:109:1-3:95
  • 9. Angelidaki I., Sanders W. 2004. Assessment of the anaerobic biodegradability of macro pollutants. Reviews in Environmental Science and Biotechnology, 3(2), 117–129. https://doi.org/10.1007/s11157-004-2502-3
  • 10. Astals S., Batstone D.J., Tait S., Jense, P.D. 2015. Development and validation of a rapid test for anaerobic inhibition and toxicity. Water Research, 81, 208–215. https://doi.org/10.1016/j.watres.2015.05.063
  • 11. Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., Sanders W.T.M., Siegrist H., Vavilin V.A. 2002. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65–73. https://doi.org/10.2166/WST.2002.0292
  • 12. Bong C.P.C., Lee C.T., Ho W.S., Hashim H., Klemes J.J., Hob C.S. 2017. Mini- Review on Substrate and Inoculum Loadings for Anaerobic Co-Digestion of Food Waste. Chemical Engineering Transactions, 56, 493–498. https://doi.org/10.3303/CET1756083
  • 13. Bremner J.M. 1966. Methods of Soil Analysis: Part 3 Chemical Methods. D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner. (Eds), Soil Science Society of America. 961–1010. https://doi.org/10.2136/sssabookser5.3.c34
  • 14. Budiyono, Syaichurrozi I., Sumardiono S. 2013. Biogas production from bioethanol waste: the effect of pH and urea addition to biogas production rate. Waste Technology, 1(1), 1–5. https://doi.org/10.1277/wastech.1.1.2013.1-5
  • 15. Chandra R., Vijay V.K., Subbarao P.M.V., Khura T.K. 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, 148–159. https://doi.org/10.1016/j.apenergy.2010.10.049
  • 16. Doerr B., Lehmkuh N. 2008. Biodigesteur à Méthane. Rapport ECHO. 1–7. (in French).
  • 17. Güllert S., Fischer M.A., Turaev D., Noebauer B., Ilmberger N., Wemheuer B., Alawi M., Rattei T., Daniel R., Schmitz R.A., Grundhoff A., Streit W.R. 2016. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnology for Biofuels, 9, 121. https://doi.org/10.1186/s13068-016-0534-x
  • 18. Gunaseelan V.N. 2004. Biochemical methane of fruits and vegetable solid waste feedstock’s. Biomass and Bioenergy, 26(4), 389–399. https://doi.org/10.1016/j.biombioe.2003.08.006
  • 19. Hess J. 2007. Modélisation de la qualité du biogaz produit par un fermenteur méthanogène et stratégie de régulation en vue de sa valorisation. [Thèse de Doctorat]. Nice: Université de Nice - Sophia Antipolis. (in French).
  • 20. Jabeen M., Zeshan Yousaf S., Haider M.R., Malik R.N. 2015. High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates. International Biodeterioration and Biodegradation, 102, 149–153. https://doi.org/10.1016/J.IBIOD.2015.03.023
  • 21. Karagiannidis A., Perkoulidis G.A. 2009. Multicriteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes Bioresource Technology, 100, 2355–2360. https://doi.org/10.1016/j.biortech.2008.11.033
  • 22. Koirala S., Khadg S. 2017. Determination of total organic carbon (TOC) in water using KMnO4 titration method. Journal of Advanced College of Engineering and Management, 3(1), 95–98.
  • 23. Konaté Y., Maiga A.H., Casells C., Picot B. 2013. Biogas production from an anaerobic pond treating domestic waste water in Burkina Faso. Journal Desalination and water treatment, 51(10–12), 2445–2452. https://doi.org/10.1016/j.ecoleng.2012.03.021
  • 24. Kra E.K.F., Lebi, Adama O. 2018. Characterization of Waste from “Attiéké” (Cassava semolina) Process for the Dimensioning of Bio-Methane’s Digester. International Journal of Applied Science and Research, 1, 1–18.
  • 25. Lacour J. 2012. Valorisation de la fraction organique de résidus agricoles et autres déchets assimilés à l’aide de traitements biologiques anaérobies. [Thèse de Doctorat]. Lyon: INSA de Lyon: Université Quisquey. (in French).
  • 26. Li J., Luo G., He L., Xu Ji., Lyu J. 2018. Analytical approaches for determining chemical oxygen demand in water bodies. Critical Reviews in Analytical Chemistry, 48(1), 47–65. https://doi.org/10.108 0/10408347.2017.1370670
  • 27. Lübken A., Gehring T., Wichern M. 2010. Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modelling. Applied Microbiology and Biotechnology, 85, 1643–1652. https://doi.org/10.1007/s00253-009-2365-1
  • 28. Luboya E.K., Kusisakana M.K., Luhata G.W., Mukuna B.K., Monga J.M., Luhata L.P. 2020. Effect of Solids Concentration on the Kinetic of Biogas Production from Goat Droppings. Journal of Energy Research and Reviews, 5(2), 25–33. https://doi.org/10.9734/JENRR/2020/v5i230145
  • 29. Mata-Alvarez J., Macé S., Llabrés P. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16. https://doi.org/10.1016/S0960-8524(00)00023-7
  • 30. MINEPAT (Ministère de l’Economie, de la Planif ication et de l’Aménagement du Territoire) 2020. Stratégie Nationale de développement 2020-2030 pour la transformation structurelle et le développement inclusif. (in French).
  • 31. Mosey F.E. 1983. Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Science and Technology, 15(8–9), 209–232. https://doi.org/10.2166/WST.1983.0168
  • 32. M’sadak Y., Baraket S. 2014. Exploitations environnementale et agronomique de la biométhanisation rurale appliquée aux déjections bovines reprises en Tunisie. Revue agriculture, 8, 42–50. (in French).
  • 33. Nelson D.L., Cox M.M. 2017. Lehninger Principles of Biochemistry. W.H. Freeman (Ed), 1328.
  • 34. Nkongho R.N., Feintrenie L., Levang P. 2014. Strengths and weaknesses of the smallholder oil palm sector in Cameroon. Oilseeds & fats Crops and Lipids, 21(2) D208. https://doi.org/10.1051/ocl/2013043
  • 35. Ngambi J.R. 2016. Les pratiques populaires à la rescousse de la salubrité urbaine : la pré-collecte, un service alternatif aux insuffisances du système formel de gestion des déchets à Yaoundé. Cybergeo : European Journal of Geography, 1–35. https://doi.org/10.4000/cybergeo.27782
  • 36. Ngnikam E., Naquin P., Pagbe-Peha C.A., Zahrani F., Djietcheu K.B. 2016. Comportement des déchets en décharge sous climat tropical humide: cas de Nkolfoulou à Yaoundé. Déchets Sciences et Techniques, 71, 3-16. https://doi.org/10.4267/dechetssciences-techniques.3349 (in French).
  • 37. Nguema P.F., Tsobgho C., Mounir Z.M. 2021. Implémentation de la pré-collecte participative dans la gestion durable des déchets solides ménagers : cas de l’arrondissement de Douala V au Cameroun. Environnement Ingénierie et Développement, 85, 26–33. https://doi.org/10.46298/eid.2021.7298 (in French).
  • 38. Picot B., Paing J., Sambuco J.P., Costa R.H.R., Rambaud A. 2003. Biogas production, sludge accumulation and mass balance of carbon in anaerobic ponds. Water Science and Technology, 48(2), 243–250. https://doi.org/10.2166/wst.2003.0127
  • 39. Saidi A., Abada B. 2007. La biométhanisation : une solution pour un développement durable. Revue des Energies Renouvelables, 31, 35–31. (in French).
  • 40. Sakouvogui A., Kamano M., Bangoura M., Keita M. 2021. Production du biogaz à partir du lisier de porc et de la bouse de vache en mono et en co-digestion à l’université de n’zérékoré, république de Guinée. Revue Ivoirienne Science et Technologie, 38, 281–295. (in French).
  • 41. Satyanarayana S., Murkutea P., Ramakant X. 2008. Biogas production enhancement by Brassica compestries amendment in cattle dung digesters. Biomass and Bioenergy, 32(3), 210–215. https://doi.org/10.1016/j.biombioe.2007.09.008
  • 42. Sawadogo J.B., Barsan N., Nikiema M., Mosnegutu E., Dianou D., Traore A.S., Ouattara A.S., Nedeff V. 2023. Anaerobic co-digestion of agroindustrial cashew nut wastes with organic matters for biogas production: case of cashew nut hull and cashew almond skin. International Journal of Biological Chemical Sciences, 17(1), 220–232. https://doi.org/10.4314/ijbcs.v17i1.16
  • 43. Shimadzu. 2013. Excellence in science. Energy Dispersive X-ray Fluorescence Spectrometer, p. 23.
  • 44. Sotamenou J. 2018. Proposition d’un outil d’évaluation du service public de gestion des déchets solides municipaux en Afrique. Déchets sciences et techniques, 76, 33–42. https://doi.org/10.4267/dechets-sciences techniques.3775. (in French).
  • 45. Tahri A., Djaafri M., Khelafi M., Kaidi K., Kalloum S., Babaamar Z. 2016. Production de biogaz à partir du déchet de la pomme de terre. Conférence: JET’2016 à Hammamet, Tunisie. (in French).
  • 46. Tcha-Thom M. 2019. Recherche d’une filière durable pour la méthanisation des déchets de fruits et d’abattoirs du Togo: Evaluation du potentiel agronomique des digestats sur les sols de la Région de Kara. [Thèse de Doctorat]. Lomé, Limoges: Université de Lomé en cotutelle avec l’Université de Limoges. (in French).
  • 47. Tchoupou A.D., Ngnikam E. 2017. Contribution à l’amélioration de la gestion des déchets d’équipements électriques et électroniques ménagers au Cameroun: cas de la ville de Douala. Déchets Sciences et Techniques, 73, 1–8. https://doi.org/10.4267/dechets-sciences-techniques.3572. (in French).
  • 48. Thonart P., Diabaté S.I., Hiligsmann S., Lardinois M. 2005. Guide pratique sur la gestion des déchets ménagers et des sites d’enfouissements technique dans les pays de Sud. Collection Points de repère : OIF I. E. Québec. (in French).
  • 49. Ukondalemba L.M., Lina Aleke A., Ngahane E.L., Musibono-Eyul’Anki D., Vasel J.-L. 2016. Valorization of oraganic household waste and septic tank sludge by anaerobic digestion. International Journal of Innovation and Scientific Research, 20(2), 272–281.
  • 50. Yu H., Zhang H., He Y. 2017. Influence of potassium on the anaerobic digestion of food waste: Performance, potassium balance, and microbial community. Bioresource Technology, 238, 710–716.
  • 51. Zerrouki S., Rihani R., Bentaha F. 2017. Etude de la digestion anaérobie des effluents issus de l’industrie agro-alimentaire. Nature & Technology Journal, 17, 25–30. http://www.unin-chlef.dz/revuenatec/issue-17/article_C/article_411. pdf (in French).
  • 52. Zhang Y., Banks C.J. 2008. Evaluation of the synergistic effects during co-digestion of food waste and cattle manure. Bioresource Technology, 99(14), 5988–5996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae01c1a1-ba99-4c77-bb21-989af05e3eb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.