PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A high-accuracy Stewart–lift platform based on a programmable logic controller – comparative case studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study reports the results of a comparative analysis of advanced high-accuracy Stewart-lift platform along with a comparative study of dynamic control. A control system powered by a programmable logic controller (PLC) was used. The properties of the system were described using a dynamic model using the Lagrange method. The real object was verified by performing several tests and comparing them using quality indicators. The results of verification tests conclusively demonstrate the system suitability for applications within industrial automation and robotics systems.
Rocznik
Strony
art. no. 151045
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Faculty of Electrical Engineerig, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, Opole, 45-758,Poland
  • KBA Automatic Sp. z o.o., Technologiczna Street 2A, Opole, 45–839, Poland
autor
  • KBA Automatic Sp. z o.o., Technologiczna Street 2A, Opole, 45–839, Poland
  • KBA Automatic Sp. z o.o., Technologiczna Street 2A, Opole, 45–839, Poland
Bibliografia
  • [1] R. Beniak, P. Majewski, M. Witek, Ł. Klar, K. Bochenek, and D. Pawuś, “A high accuracy stewart-lift platform based on a programmable logic controller-theory and practical implementation,” Nonlinear Dyn., vol. 112, pp. 1–32, 2024.
  • [2] Y. Cai, S. Zheng, W. Liu, Z. Qu, J. Zhu, and J. Han, “Adaptive robust dual-loop control scheme of ship-mounted stewart platforms for wave compensation,” Mechan. Mach. Theory, vol. 164, p. 104406, 2021, doi: 10.1016/j.mechmachtheory.2021.104406.
  • [3] W.P. Hunek et al., “A measurement-aided control system for stabilization of the real-life stewart platform,” Sensors, vol. 22, no. 19, p. 7271, 2022, doi: 10.3390/s22197271.
  • [4] D.-A. Pham, T. N. Pham, and D.-T. Nguyen, “Novel model predictive control-based motion cueing algorithm for compensating centrifugal acceleration in kuka robocoaster-based driving simulators,” Sci. Prog., vol. 106, no. 4, p. 00368504231204759, 2023, doi: 10.1177/00368504231204759.
  • [5] Z.-Q. Lu, D. Wu, H. Ding, and L.-Q. Chen, “Vibration isolation and energy harvesting integrated in a stewart platform with high static and low dynamic stiffness,” Appl. Math. Mod., vol. 89, pp. 249–267, 2021, doi: 10.1016/j.apm.2020.07.060.
  • [6] M. Wang et al., “An adjustable low-frequency vibration isolation stewart platform based on electromagnetic negative stiffness,” Int. J. Mech. Sci., vol. 181, p. 105714, 2020.
  • [7] F. Hu and X. Jing, “A 6-dof passive vibration isolator based on stewart structure with x-shaped legs,” Nonlinear Dyn., vol. 91, pp. 157–185, 2018.
  • [8] H. Yun, L. Liu, Q. Li, W. Li, and L. Tang, “Development of an isotropic stewart platform for telescope secondary mirror,” Mech. Syst. Signal Process., vol. 127, pp. 328–344, 2019.
  • [9] M. Ghosh and S. Dasmahapatra, “Kinematic modeling of stewart platform,” in Intelligent Techniques and Applications in Science and Technology: Proceedings of the First International Conference on Innovations in Modern Science and Technology vol. 1. Springer, 2020, pp. 693–701.
  • [10] W. Qiu, S. Wang, A. Niu, K. Fan, G. Han, and H. Chen, “Modeling and analysis of landing collision dynamics for an active helideck based on the stewart platform,” Ocean Eng., vol. 297, p. 117107, 2024.
  • [11] S. N. Nabavi, A. Akbarzadeh, and J. Enferadi, “Closed-form dynamic formulation of a general 6-p us robot,” J. Intell. Robot. Syst., vol. 96, pp. 317–330, 2019.
  • [12] X. Yang, H. Wu, B. Chen, S. Kang, and S. Cheng, “Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation,” J. Sound Vibr., vol. 439, pp. 398–412, 2019, doi: 10.1016/j.jsv.2018.10.007.
  • [13] T. R. Peterson, “Design and implementation of stewart platform robot for robotics course laboratory,” Ph.D. dissertation, California Polytechnic State University, 2020.
  • [14] T. Zhang, X. Gong, L. Zhang, Y. Wang, Y. Liu, and L. Li, “A method for solving the additional stiffness introduced by flexible joints in stewart platform based on fem modal analysis,” Machines, vol. 11, no. 4, p. 457, 2023, doi: 10.3390/machines11040457.
  • [15] F. Tajdari, M. Tajdari, and A. Rezaei, “Discrete time delay feedback control of stewart platform with intelligent optimizer weight tuner,” in 2021 IEEE International Conference on
  • Robotics and Automation (ICRA), 2021, pp. 12 701–12 707, doi: 10.1109/ICRA48506.2021.9561010.
  • [16] H. Yadavari, V. Tavakol Aghaei, and S. İkizoğlu, “Deep Reinforcement Learning-Based Control of Stewart Platform With Parametric Simulation in ROS and Gazebo,” J. Mech. Robot., vol. 15, no. 3, p. 035001, 2023, doi: 10.1115/1.4056971.
  • [17] D. Balaban, J. Cooper, and E. Komendera, “Inverse kinematics and sensitivity minimization of an n-stack stewart platform,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 6794–6799.
  • [18] W. Wei, Z. Xin, H. Li-Li, W. Min, and Z. You-Bo, “Inverse kinematics analysis of 6–dof stewart platform based on homogeneous coordinate transformation,” Ferroelectrics, vol. 522, no. 1, pp. 108–121, 2018.
  • [19] G. Hu, X. Li, and X. Yan, “Inverse kinematics model’s parameter simulation for stewart platform design of driving simulator,” in Green Intelligent Transportation Systems: Proceedings of the 7th International Conference on Green Intelligent Transportation System and Safety 7. Springer, 2018, pp. 887–898.
  • [20] Y. TANG, Y. ZHUANG, L. SHI, and Y. JIA, “Kinematic analysis of a stewart platform based on afsa,” Univ. Politeh. Buchar. Bull. Ser.-Mech. Eng., vol. 81, no. 3, pp. 15–26, 2019.
  • [21] Y. Liang, J. Zhao, S. Yan, X. Cai, Y. Xing, and A. Schmidt, “Kinematics of stewart platform explains three-dimensional movement of honeybee’s abdominal structure,” J. Insect Sci., vol. 19, no. 3, p. 4, 2019.
  • [22] T. Miunske, J. Pradipta, and O. Sawodny, “Model predictive motion cueing algorithm for an overdetermined stewart platform,” J. Dyn. Syst. Measu. Control, vol. 141, no. 2, p. 021006, 2019.
  • [23] A. Hameed, A.S.S. Abadi, and A. Ordys, “Model predictive control based motion cueing algorithm for driving simulator,” J. Syst. Sci. Syst. Eng., pp. 1–20, 2023, doi: 10.1007/s11518-023-5584-6.
  • [24] H. Asadi, T. Bellmann, M.C. Qazani, S. Mohamed, C.P. Lim, and S. Nahavandi, “A novel decoupled model predictive control-based motion cueing algorithm for driving simulators,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 7024–7034, 2023.
  • [25] X. Yang, H. Wu, B. Chen, S. Kang, and S. Cheng, “Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation,” J. Sound Vibr., vol. 439, pp. 398–412, 2019.
  • [26] J. Jiao, Y. Wu, K. Yu, and R. Zhao, “Dynamic modeling and experimental analyses of stewart platform with flexible hinges,” J. Vibr. Control, vol. 25, no. 1, pp. 151–171, 2019.
  • [27] Z. Liu, C. Cai, M. Yang, and Y. Zhang, “Testing of a mems dynamic inclinometer using the stewart platform,” Sensors, vol. 19, no. 19, p. 4233, 2019.
  • [28] R. Beniak, “Influence of frequency decision taking and torque hysteresis on accuracy of trajectory in industrial manipulator with direct torque control of induction motor drives,” Stud. Appl. Electromagn. Mech., vol. 33, p. 459, 2010.
  • [29] R. Szczepanski, T. Tarczewski, and L. Grzesiak, “PMSM drive with adaptive state feedback speed controller,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1009–1017, 2020, doi: 10.24425/bpasts.2020.134624.
  • [30] D. Pawuś and S. Paszkiel, “Identification and expert approach to controlling the cement grinding process using artificial neural networks and other non-linear models,” IEEE Access, vol. 12, pp. 26 364–26 383, 2024.
  • [31] P. Burzynski, A. Simha, Ü. Kotta, E. Pawluszewicz, and S. Sastry, “Flhex: a flapped-paddle hexapod for all-terrain amphibious locomotion,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, p. e139007, 2021, doi: 10.24425/bpasts.2021.139007.
  • [32] D. Pawuś and S. Paszkiel, “Application of eeg signals integration to proprietary classification algorithms in the implementation of mobile robot control with the use of motor imagery supported by emg measurements,” Appl. Sci., vol. 12, no. 11, p. 5762, 2022, doi: 10.3390/app12115762.
  • [33] S. Sokół, D. Pawuś, P. Majewski, and M. Krok, “The study of the effectiveness of advanced algorithms for learning neural networks based on fpga in the musical notation classification task,” Appl. Sci., vol. 12, no. 19, p. 9829, 2022, doi: 10.3390/app12199829.
  • [34] T. Kornuta, C. Zieliński, and T. Winiarski, “A universal architectural pattern and specification method for robot control system design,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 3–29, 2020.
  • [35] R. Beniak, “Research on the development of real-time synchronization technology for electric motors installed in multi-drive industrial elevators (in Polish),” KBA Automatic Sp. z o.o., Tech. Rep., 2020.
  • [36] KBA Automatic Sp. z o.o., “Stewart platform - high accuracy elevator,” 2023. [Online]. Available: https://www.siemens.com/pl/pl/o-firmie/case-study/platforma-stewarta-winda-duzej-dokladnosci.html
  • [37] P. Majewski, W. P. Hunek, D. Pawuś, K. Szurpicki, and T. Wojtala, “A sensor-aided system for physical perfect control applications in the continuous-time domain,” Sensors, vol. 23, no. 4, p. 1947, 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adff35c7-79a4-4371-b524-74c161ad780c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.