PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Obstacles Effect on Mobile Network and WLAN Signal Strength

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the era of continuous advancement in wireless technologies, path loss, also known as channel attenuation, is a drop in signal strength from the transmitter to the receiver. Path loss modelling is critical in designing fixed and mobile communication systems for various applications. This paper focuses on the received power (dBm) and free space path loss (FSPL) on various distances and frequencies such as 5240 MHz for wireless local area network (WLAN) and frequency such as 2100 MHz for the mobile network such as Celcom. As a result, able to analyze the correspondence between received power (dBm) and distance of each related frequency and the correspondence between FSPL (dB) and distance of each corresponding frequency and able to analyze the effect of obstacle on received power (dBm) and frequency.
Rocznik
Strony
155--161
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab., wykr.
Twórcy
  • Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
autor
  • Faculty of Electronic Engineering Technology and Advanced Communication Engineering, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
autor
  • Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
  • Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
autor
  • Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
Bibliografia
  • [1] Volakis, J. L. (2007). Antenna Engineering Handbook (Fourth, Vol. Fourth). McGraw-Hill.
  • [2] Grant, A. L. (2019, March 12). Path loss models for two small airport indoor environments at 31 GHz. Scholar Commons. Retrieved January 26, 2023, from https://scholarcommons.sc.edu/etd/5258/
  • [3] Popoola, J. J., Ponnle, A. A., Olasoji, Y. O., & Oyetunji, S. A. (2018). Investigation on need for specific propagation model for specific environment based on different terrain characteristics. IIUM Engineering Journal, 19(2), 90-104. https://doi.org/10.31436/iiumej.v19i2.886
  • [4] Ghafar, A. A., Kassim, M., Ya’acob, N., Mohamad, R., & Rahman, R. A. (2020). QoS of Wi-Fi performance based on Signal Strength and channel for Indoor Campus Network. Bulletin of Electrical Engineering and Informatics, 9(5), 2097-2108. https://doi.org/10.11591/eei.v9i5.2251
  • [5] Zhou, M., Liu, Y., Nie, W., Xie, L., & Tian, Z. (2018). Secure mobile crowdsourcing for WLAN indoor localization. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). https://doi.org/10.1109/infcomw.2018.8406947
  • [6] Israr, I., Ashraf Khan, M., A. Malik, S., A. Khan, S., & Shakir, M. (2015). Path loss modeling of WLAN and WiMAX Systems. International Journal of Electrical and Computer Engineering (IJECE), 5(5), 1083. , https://doi.org/10.11591/ijece.v5i5.pp1083-1091
  • [7] Garg, V. K. (2007). Wireless Communications & Networking. https://doi.org/10.1016/b978-0-12-373580-5.x5033-9
  • [8] What is a Wireless Local Area Network (WLAN)? - definition from Techopedia. Techopedia.com. (2020, September 29). Retrieved September 26, 2021, from https://www.techopedia.com/definition/5107/wireless-local-area-network-wlan
  • [9] Mishra, A. R. (2018). Fundamentals of Network Planning and Optimisation 2G/3G/4G. John Wiley Sons, vol. 2, p. 440. https://doi.org/10.1002/9781119331797
  • [10] Chruszczyk, Ł. (2017). Statistical analysis of indoor rssi read-outs for 433 mhz, 868 mhz, 2.4 GHz and 5 ghz ISM bands. International Journal of Electronics and Telecommunications, 63(1), 33-38. https://doi.org/10.1515/eletel-2017-0005
  • [11] Hoomod, H. K., Al-Mejibli, I., & Jabboory, A. I. (2018). Analyzing study of path loss propagation models in wireless communications at 0.8 GHz. Journal of Physics: Conference Series, 1003, 012028. https://doi.org/10.1088/1742-6596/1003/1/012028
  • [12] Gulia, R. (2020). Path loss model for 2.4GHz indoor wireless networks with application to drones. RIT Scholar Works. Retrieved September 26, 2021, from https://scholarworks.rit.edu/theses/10537/
  • [13] Chruszczyk, Ł., & Zając, A. (2016). Comparison of indoor/outdoor, RSSI-based positioning using 433, 868 or 2400 mhz ISM bands. International Journal of Electronics and Telecommunications, 62(4), 395-399. https://doi.org/10.1515/eletel-2016-0054
  • [14] What are the differences between RSRP, RSRQ, RSSI, and sinr. Huawei Enterprise Support Community. (2020, October 20). Retrieved September 26, 2021, from https://forum.huawei.com/enterprise/en/what-are-the-differences-between-rsrp-rsrq-rssi-and-sinr/thread/665359-869
  • [15] Kim, M. D., Liang, J., Lee, J., Park, J., & Park, B. (2017). Path loss measurements and modeling for indoor office scenario at 28 and 38 GHz. In 2016 International Symposium on antennas and propagation (ISAP) (pp. 64-65). essay, IEEE.
  • [16] Abdorahimi, D., & Sadeghioon, A. M. (2019). Comparison of radio frequency path loss models in soil for wireless underground sensor networks. Journal of Sensor and Actuator Networks, 8(2), 35. https://doi.org/10.3390/jsan8020035
  • [17] Stutzman, W. L., & Thiele, G. A. (2013). Antenna Theory and design (Vol. 3). Wiley.
  • [18] Multimedia Commission, M. C. (2019, December). Public Inquiry - Malaysian Communications and Multimedia Commission. Public Inquiry of Spectrum Allocation : Allocation of spectrum bands for mobile broadband service in Malaysia. Retrieved August 22, 2021, from https://www.mcmc.gov.my/skmmgovmy/media/General/pdf/Public-Inquiry-Allocation-of-spectrum-bands-for-mobile-broadband-service-in-malaysia.pdf
  • [19] Network Cell Info. WiLysis. (2018, May 30). Retrieved July 21, 2021, from http://wilysis.com/
  • [20] Fenwick, S., Khatri, H., & Leadership, V. (2020, June 29). The state of Mobile Network experience 2020: One Year into the 5G era. Opensignal. Retrieved June 15, 2021, from https://www.opensignal.com/reports/2020/05/global-state-of-the-mobile-network
  • [21] Malandrino, F., Chiasserini, C.-F., & Kirkpatrick, S. (2018). Cellular network traces towards 5G: Usage, analysis and generation. IEEE Transactions on Mobile Computing, 17(3), 529-542. https://doi.org/10.1109/tmc.2017.2737011
  • [22] Elkhair, A. A. E., Abdalla, A. G., & Osman, O. M. (2021). Performance evaluation of homogeneous network in cellular Wi-Fi. 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). https://doi.org/10.1109/iccceee49695.2021.9429676
  • [23] Chruszczyk, Ł., Zając, A., & Grzechca, D. (2016). Comparison of 2.4 and 5 ghz WLAN network for purpose of indoor and outdoor location. International Journal of Electronics and Telecommunications, 62(1), 71-79. https://doi.org/10.1515/eletel-2016-0010
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. This work was supported by the UTM Fundamental Research from Universiti Teknologi Malaysia under a grant number of Q.J130000.3851.22H13 and Fundamental Research Grant Scheme for Research Acculturation of Early Career Researchers (RACER) under a grant number of RACER/1/2019/STG05/UNIMAP//1 from the Ministry of Higher Education Malaysia.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adfbaab2-6c93-4313-ad2d-ba5d624969a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.