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Abstract 

A mathematical model of makespan optimization in the divided flow production 
line is presented. The methodology of Constraint Programming and Integer 
Programming to optimization of makespan in the above environment have been 
considered. Multiple examples illustrate the concept proposed 

 
 
1. INTRODUCTION 
 

Shop scheduling has been researched in many varieties. The basic shop scheduling model 
consists of machines and jobs each of which consists of a set of operations.  Each operation 
has an associated machine on which it has to be processed for a given length of time. The 
processing times of operations of a job cannot overlap. Each machine can process at most one 
operation at the given time. In the basic models are m machines and  n jobs. The processing 
time of an operation of job j on machine i is denoted by pij and pmax =max pij . The three well-
studied models are the open shop, flow shop and job shop problems. In an open shop problem, 
the operations of a job can be performed in any order. In a job shop problem the operations 
must be processed in a specific, job-depended order. A flow shop is a special case of a job shop 
in which each job has exactly m operations- one per machine. And also the order in which they 
must be processed is the same for all the jobs. The problem is to minimize makespan. 
Makespan is the overall length, of the schedule with the above constraints [1]. All above 
mentioned problems are strongly NP-hard. For the flow shop problem, the case where there are 
more than two machines is strongly NP-hard., although the two machines version is 
polynomial solvable [2]. 

In this chapter we present the problem which belongs to the flow shop production 
environment. There is a flow production line which can be dynamically divided into sections 
designated to concurrent processing different products. The production flow through machines 
belonging to the section is synchronized. The set of products which can be manufactured in 
a given line depends on tools the line is equipped with. Each feasible set of products processed 
concurrently in the line has been named the production variant. This is a common 
manufacturing environment for repetitive production in a small or medium sized 
manufacturing company. Moreover, we present two computational philosophies and three 
computational environments in illustrative examples for the above problem. 
                                                           
*  Dr inż., Technical University of  Kielce, e-mail: sitek@tu.kielce.pl 
** Dr inż., Technical University of  Kielce, e-mail: j.wikarek@tu.kielce.p 



 220

2. DESCRIPTION OF THE PROBLEM OF OPTIMIZATION OF 
MAKESPAN IN THE FLOW PRODUCTION LINE 

 
In this chapter we will consider a production system (see fig.1) which consists of a flow 

production line, which is composed of N identical workstations (machines). The line can be 
dynamically divided into sections which execute operations on their products j∈J and each 
machine (section) is equipped with tools at the same time (setup time). 

The problem for this particular case is how to allocate products to production variants s∈S 
of the line to minimize makespan and cover requirements for the system products Zj. 

Better allowance of products to variants assures:  
− Better utilization of machines, shortening of time of production orders execution  
− Smaller numbers of production variants which involves smaller frequency of setups.  

 

 
 
Fig.1. Flow production line in exemplified variants: s=1, s=2, s=4 and s=6. The line is divided 
into two sections in variant s=2 for products j=1, j=2.The line is dived into three sections for 
variant s=4 for products j=1,j=6, j=9 and for variant s=6 products j=1, j=8, j=4.At the end the 

line has one section in variant s=1 for product j=10 - (see example_1) 
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3. MATHEMATICAL MODEL OF OPTIMIZATION OF MAKESPAN 
IN THE FLOW PRODUCTION LINE 

 
In the system of a flow production line (fig.1) products j∈J are produced, where J is a set 

of all products. Total production from all production variants of the line should cover 
requirements for the system products. This dependence can be expressed as equations (1), 

∑
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s Z

1
jjz     Jj for ∈ ,     (1) 

where: 
jZ  – quantity of order of the product j ,  
jsz  – planned quantity of the product j from the variant s of line, Jj∈ , S1..s = . 

Processing the product demands definite number of operations. Every operation is executed 
on a single machine. It is obvious that the total number of simultaneously executed operations 
may not be greater than number of machines in the production line. 
Thus,  
∑
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 otherwise, 0,   

jK – number of operations of the product Jj∈ ,as well as number of machines in the 
section producing the product,  

N - number of machines in the line production line. 
 

The run time ts for the variant s of the production line may not be shorter than the run time 
of any product processed in this variant (fig.2).This condition can be expressed as inequality: 

sjsj tzp ≤ ,    S..1s J,j for =∈ ,     (3) 
where  

jp – production pace of the product j. It is equal to the longest operation time of the product 
Jj∈ . 

 1..S,s  ;exists,really   line production  theofh  variant  theify   ,
s =


= 1  

otherwise 0,   
 

The binary decision variables ys are introduced to the model because the number of variants 
for a given line is unknown and S is its assumed upper bound. If the product j is not allocated 
to the variant s of the production line, that is to say when xsj=0, then the proper quantity zsj 
should be equal to 0. Similarly, if variant s does not exist for the production line, that is to say 
when ys=0, then its run time ts equals 0.  

 
These rules are equivalent to conditions (4) and (5),  

djsjsj Txzp ≤ ,    1..Ss J,j for =∈ ,     (4) 
 

dss Tyt ≤ ,    S1..s for = ,     (5) 
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Obviously, binary decision variables must satisfy the following constraints (7)..(11)  

   
where  
τ – setup time, which is assumed, for simplicity, to be identical for all variants  

 
The goal function of this problem is the makespan (11). The problem of optimization 

makespan in flow production line which can be divided into sections is to minimize f under 
constraints from (1) to (10). Thus, this is an integer programming problem. 
 
 
4. THE COMPUTATIONAL ENVIRONMENTS FOR THE 

OPTIMIZATION 
 

To solve the optimization problem three computational environments were used: package 
LINGO, language CHIP as well as Oz/MOZART. All are declarative environments. The 
LINGO supports standard operation research (OR) methods and algorithms like: Simplex 
Method, Successive Linear Programming (SLP), Generalized Reduced Gradient (GRG), 
Branch-and-Bound method.  

The CHIP and Oz/MOZART support paradigm of constraint programming. Constraint 
programming (CP) is a declarative programming technique that has grown from the 
cooperation of several research disciplines including Artificial Intelligence, Computational 
Logic, Programming Languages and Operation Research. It has become an indispensable 
methodology and implementation for modeling and solving difficult combinatorial problems. 
Its highly declarative nature and its powerful solving methods have led to its commercial 
success.  
 
4.1. LINGO 
 

LINGO is a simple tool for performing complex and powerful task. It’s easy to use, with 
smaller number commands than traditional programming languages. At the simplest level, this 
means that with LINGO you can solve equations with many independent variables (direct 
models) or with interdependent variables (simultaneous models) by entering just a few simple 
lines. The LINGO has modeling language, which unlike conventional programming languages 
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such as Pascal, Basic or C, is nonprocedural. That is, when you specify a model for LINGO to 
solve, you only tell you what you want, not how it should find the solution. 

It’s LINGO job to worry about how. In this sense LINGO is known as a specification 
language (similar to declarative languages). You tell it what you want and it does the rest. 

LINGO’s modeling language lets you express the problem in a natural manner, which is 
very similar to standard mathematical notation. 

 
LINGO has four solvers: 
− A direct solver, 
− A simultaneous linear solver/optimizer, 
− A simultaneous nonlinear solver/optimizer, 
− A branch-and-bound manager for models with integer restrictions. 
 
LINGO determines which solvers to use on a model by examining its structure and 

mathematical content. The basic structure of a LINGO optimization model consists of the 
MODEL and END statements. The rest of the text is the model. There are three optional 
sections: SETS, DATA and INIT.  

The SETS section of a model 
Sets are simply groups of related objects. A set might be a list of products, tasks, orders or 

stocks. The SETS section begins wit the word SETS: and ends with word ENDSETS. 
The DATA section of a model 

For the purpose of giving values to same set attributes before the LINGO can solve the 
model, the package uses a second optional section the DATA section. Similar to the SETS 
section begins with the word DATA: and ends with the word ENDDATA. In this section you 
type expressions to initialize the attributes of the sets you defined in the SETS sections. In the 
DATA section you can also use file import functions: @import and @file to give values to 
some set attributes from external files. 

The INIT section of a model 
To give initial values to attributes (usually unknown for which you are solving) LINGO 

uses an optional model section called the INIT section. It begins with the word INIT: and ends 
with the word ENDINIT.  

Most templates consist of three sections: 
− a structure section giving definitions of variables and SETS; 
− a DATA section with input data for the particular problem; 
− the model equations. 

 
The source code of model implementation in the LINGO environment has been presented 

in the appendix A.  
 
4.2. CHIP (Constraint Handling in Prolog) 
 

CHIP is a constraint logic programming language (CLP) designed to tackle efficiently the 
so-called constrained search problems. CLP may be defined as a body of techniques used for 
solving problems with constraints. The essence of CLP: modeling combinatorial, continuous 
and mixed decision problems with the help of constraints and logical relations, solving 
combinatorial, continuous and mixed decision problems by analyzing and propagating the 
constraints [5]. 

The main idea of CLP is: 
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− Problems to be solved are modeled using elementary logic, in a way that turns the 
model into a part of the problem-solving program. 

− Exploring constraints, which should be satisfied by the solutions, generates solutions. 
CHIP is a new generation programming language which combines powerful modeling 

capability, flexibility and versatility of advanced Artificial Intelligence tools with the efficiency 
of conventional algorithmic approaches. CHIP provides different programming methods and 
problem solving techniques in one programming environment. 

There are Logic programming, Constraint programming, Linear programming, Integer 
programming, Branch-and-Bound procedure, etc.  
 The source code of model implementation in the CHIP has been presented in the appendix B.  
 
4.3. Oz/MOZART 
 

In the CLP framework the underlying constraint solver is treated as a black box. Which 
cannot be changed or even looked at by the user? Moreover, the user cannot extend such 
constraint handler at the program level, because the language does not provide the necessary 
operations on constraints which are usually used by the constraint solution algorithms. There is 
already a language framework which seems to have the desired flexibility which is missing in 
CLP. It is the concurrent constraint programming (CCP) framework which can be thought of as 
CLP plus concurrency. More precisely a CCP program consists of set concurrent agents which 
share a set of variables that are subject to some constraints [7]. 

Oz is a new language combining functions with relations so that it has the potential for 
extra expressiveness in the constraint solver. Oz is a good platform to integrate algorithms 
from OR to achieve an amalgamation of a high-level constraint language with efficient OR 
methods. Oz is a CCP language for functional, object-oriented, and constraint programming 
(CP) [6]. The unique advantages of Oz, which can be offered to the OR problems, are: 

− Expressiveness. Different language paradigms allow a natural and high-level modeling 
of the problem. Concurrent constraints provide for rapid prototyping and testing of 
different models. 

− Programmable Search. The users can program their own strategies. Search is 
separated from the reduction of search space achieved by constraint propagation. 

− Modularity.  
− Openness. Through the use of C++, new constraints can be implemented efficiently by 

the programmer and used like any Oz procedure. 
Oz provides algorithms to decide the satisfiability and implications for basic constraints 

which take form x=n, x=y; x, y ∈ D where x and y are variables, n is an nonnegative integer 
value and D is finite domain. The basic constraints reside in the constraint store. Non-basic 
constraints, such x-y=z, are not contained in the constraint store but are imposed by 
propagators. An Oz propagator is a computational agent which is posted on the variables 
occurring in the corresponding domain. It reads the constraint store and tries to narrow the 
domains. The propagators try to do by amplifying the store with basic constraints. 

 
Example: 
Constraint store containing the domain variables X, Y wit the domain [1,..5]. 
The propagator is running for constraint X+Y =4 
The propagator narrows the domain for both variables [1..3].  
Adding the constraint X=1 narrows the domain of X to 1 and the domain of Y to 3. 
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The source code of model implementation in the Oz/MOZART environment has been 
presented in the appendix C.  
 
 
5. THE ILLUSTRATIVE EXAMPLES 
 

The mathematical model (1) .. (12) is the integer programming model (classical OR model) 
than can be implemented in any computational environment without loss of cohesion. 

In this section, two illustrative examples are presented. The exemplified flow production 
line consists of five identical workstations (machines) (fig. 1). The main difference between 
examples is the size (tab.1).  
 
Tab.1. The size of  the example 
 

Number of Example Products j Constraints Variables (Integers) 
example_1 10 126 127 (55) 
example_2 26 467 468 (216) 

 
In example_1 the line should produce 10 products in the maximum 10 production variants 

(this is upper bound of the number of production variants which is equal to the number of 
products). The quantity of orders of the products in example_1 is the following Z j ={180, 18, 
14, 14, 20, 20, 18, 18, 18, 14, 20}. The other data for this example pj, Kj are in the table 2. The 
setup time is identical for all variants τ=10. The result of optimization is the makespan  f= 480. 
For this optimal solution the proper number of variants, run times ts, planned quantities zsj  are 
shown in table 2. 

 
 

Fig.2. Gantt’s chart of the optimal schedule for example_1 
 

The Gantt’s chart of the schedule for the optimal makespan Cmax=480 in example_1 is 
shown in fig. 2. There are six production variants. In each variant from one to three products 
are produced (tab.4 and fig.2). 
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Tab.2. Data and results for  example_1 
 

s  ts 
j 10 
pj 3 
zsj 20 
Kj 4 

1 

pj* zsj 60 

 

60 

j 1 2 
pj 2 2 
zsj 104 18
Kj 2 2 

2 

pj* zsj 208 36

 

208 

j 1 5 
pj 2 2 
zsj 20 20
Kj 2 2 

3 

pj* zsj 40 40

 

40 

j 1 6 9 
pj 2 2 1 
zsj 20 20 14 
Kj 2 2 1 

4 

pj* zsj 40 40 14 

40 

j 1 3 7 
pj 2 1 2 
zsj 18 14 18 
Kj 2 1 2 

5 

pj* zsj 36 14 36 

36 

j 1 4 8 
pj 2 1 2 
zsj 18 14 18 
Kj 2 1 2 

6 

pj* zsj 36 14 36 

36 

 
In  example_2 the production line should produce 26 products in the maximum 26 

production variants (this is upper bound of the number of production variants which is equal to 
the number of products). The quantity of orders of the products is the following Z j 
={2,1,3,3,10,10,9,9,7,7,7,7,7,10,10,2,9,9,7,7,2,7,7,3,3,3}.The quantity of order in this example 
is expressed in the number of batches. The batch size carries out one hundred. The other data 
i.e. pj, Kj are in the table 2. The setup time is identical for all variants τ=1. The result of 
optimization is the makespan f=126. Number of variants, run times ts, planned quantities zsj for 
the optimal solution are shown in table 4. 
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Tab.4. Data and results for example_2 
 

s  ts 
j 26 25 24 21 
pj 1 1 1 1 
zsj 3 3 3 2 
Kj 1 1 1 1 

1 

pj* zsj 3 3 3 2 

3 

j 17 20 22 23 
pj 2 1 1 1 
zsj 9 7 7 7 
Kj 2 1 1 1 

2 

pj* zsj 18 7 7 7 

18 

j 14 15 19  
pj 2 2 1  
zsj 10 10 7  
Kj 2 2 1  

3 

pj* zsj 20 20 7  

20 

j 13 18   
pj 4 1   
zsj 7 9   
Kj 4 1   

4 

pj* zsj 28 9   

28 

j 10 11 12 16 
pj 1 1 1 2 
zsj 7 7 7 2 
Kj 1 1 1 2 

5 

pj* zsj 7 7 7 4 

7 

j 7 8 9  
pj 2 2 1  
zsj 9 9 7  
Kj 2 2 1  

6 

pj* zsj 18 18 7  

18 

j 4 5 6  
pj 1 2 2  
zsj 3 10 10  
Kj 1 2 2  

7 

pj* zsj 3 20 20  

20 

j 1 2 3  
pj 2 2 1  
zsj 2 1 3  
Kj 2 2 1  

8 

pj* zsj 4 2 3  

4 

 
In both optimal solutions we can notice better utilization of machines and a smaller number 

of productive variants (tab. 3). 
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Tab.3. Number of variants and the proper utilization of machines 
 

 Example 
Number of 

variants (upper 
bound) 

Number of 
variants (after 
optimization) 

Utilization of 
machines 

s=1 4 
s=2 4 
s=3 4 
s=4 5 
s=5 5 

example_1 10 6 

s=6 5 
s=1 4 
s=1 5 
s=1 5 
s=1 5 
s=1 5 
s=1 5 
s=1 5 

example_2 26 8 

s=1 5 
 

The considered examples of optimization of makespan in divided flow production line are 
problems of integer programming. Therefore the Branch-and-Bound method was applied at 
first to solve them. Any Branch-and-Bound (B&B) algorithm consists of two basic procedures: 
branching or partitioning the feasible solution into some number of subsets and bounding or 
estimating the optimal value of the objective (goal) function on these subsets. The B&B 
algorithm is implemented in many commercial and freeware computational systems. One of 
them is the LINGO system which consists of the modeling language and optimizer. LINGO is 
a simple tool for performing complex and powerful tasks [3]. 

For optimization of example_1 LINGO system was used. The result of optimization 
f:Cmax=480 was obtained. Unfortunately, it was not possible to use LINGO system for 
example_2. The calculation time was too long. Calculations were interrupted after 12 hours.  
So it was necessary to examine an alternative method of optimization. In view of the fact that 
the considered problem possesses constraints and that we have some experience in this kind of 
problems [4] therefore the alternative optimization method, namely the CLP (constraint logic 
programming) was applied. Using CHIP language we obtained the result of optimization for  
example_2 (f=126). 

Time of calculations in both approaches is shown in the table 5. It resulted from the version 
of both tools. CHIP language had to be started on the older computer (PII, 300 MHz, RAM 64 
MB) under operating system DOS whereas the system LINGO was started on the computer 
(PIV, 1,4 GHz, RAM 512 MB) under Windows XP. Time of calculation was about one hour 
(see tab.3). 

As standing to computational experiments environment Oz/MOZART was applied. The 
same values of goal function were obtained like in the case of language CHIP. However, in 
reasonable time it did not manage to finish calculations with confirmation of optimality of 
solution. Therefore in spite of obtained value one should to treat obtained solutions as feasible. 
 



 229 

Tab.5. Time of calculation 
 

Example f: Cmax LINGO CHIP Oz/MOZART 
Example_1 480 600s 900s 300s* 
Example_2 126 > 40 000s 3900s 300s* 

*feasible solution. 
 
In the above computational experiments we only compared capability and efficiency of 

three different computational environments: LINGO – integer programming CP/CLP –
constraint logic programming-CHIP and CP/CCP –constraint concurrent programming – 
Oz/MOZART for the particular example. 
 
 
6. CONCLUSIONS 
 

The methodologies of propagation of constraints with Branch-and-Bound in CP and only 
Branch-and-Bound in Integer Programming (LINGO) for optimization of makespan in the 
divided flow production line are considered. Its objective is to provide a computer-
implemented model of the above presented problem. Additionally, the chapter introduces the 
comparison of three computational environments: CP/CLP, CP/CCP and Integer Programming 
in commercial solver (LINGO). There are two different computational philosophies. In the 
commercial solver one should transform a mathematical model to a suitable form using the 
language of modeling. Then solver uses the implemented algorithms and methods try to solve 
it. During the transformation some aspects of the problem could be lost. The idea underlying in 
CP is that constraints can be used to represent the problem, to solve it. In the presented 
problem the CP/CLP approach is more effective for the bigger size examples. 

An effective CP framework was implemented in a simple flow shop production line 
environment for rather small companies. The extension to the whole flow shop and open shop 
problems is a subject of our currently conducted research. Constraint Programming framework 
will be implemented not only as an optimization method but as a modeling method and the 
method for searching feasible solutions. 

Solving of NP - hard problems is always a great challenge. Using methodology which 
supports constraint programming to these problems is very effective. Therefore in the future 
one should seek environments, which comprise logic programming, constraint programming, 
concurrent programming and distributed programming. 
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Appendix A IMPLEMENTATION OF OPTIMIZATION MODEL IN LINGO 
!MODEL OF OPTIMIZATION OF MAKESPAN IN FLOW PRODUCTION LINE;  
 MODEL:  
  SETS:  
   variants /1..9/:Ts,Ys;  
   products /1..26/:j,Pj,Zj,Kj; 
   allocations(variants,products):Zsj,Xsj;  
  ENDSETS  
  DATA: 
   Pj =@file(tlocznia.ldt); 
   Zj =@file(tlocznia.ldt); 
   N  =@file(tlocznia.ldt); 
   Kj =@file(tlocznia.ldt);  
   Tal=@file(tlocznia.ldt);  
   Tmax =@file(tlocznia.ldt);  
  ENDDATA  
!Goal function ; 
 min=t; 
!constraint 12;  
 @sum(variants(b1):Ts(b1)+Tal*Ys(b1))=t; 
!constraint 3;  
 @for(allocations(b1,c1):Zsj(b1,c1)*Pj(c1)<=Ts(b1));  
!constraint 1;  
 @for(products(a1):@sum(variants(c1):Zsj(c1,a1))=Zj(a1));  
!constraint 5;  
 @for(allocations(b1,c1):Zsj(b1,c1)*Pj(c1)<=Xsj(b1,c1)*Tmax); 
!constraint 6;  
 @for(variants(b1):Ts(b1)<=Ys(b1)*Tmax);  
!constraint 2;  
 @for(variants(b1):@sum(products(c1):Xsj(b1,c1)*Kj(c1))<=N); 
!constraint 8,9 (binarity of Ys, Xsj) ;  
 @for(allocations(b1,c1):@bin(Xsj(b1,c1))); 
 @for(variants(b1):@bin(Ys(b1))); 
END 
 
!Data for optimization example;  
 !Pj= ;  
2 2 1 2 2 2 2 2 1 1 1 1 4 2 2 2 2 1 1 1 1 1 1 1 1 1 ~ 
 !Zj= ;  
9 9 7 7 10 10 9 9 7 7 7 7 7 10 10 9 9 7 7 7 7 7 7 3 3 3 ~ 
 !N= ;  
5 ~ 
 !Kj= ; 
2 2 1 1 2 2 2 2 1 1 1 1 4 2 2 2 2 1 1 1 1 1 1 1 1 1 ~  
 !Tal=; 
1 ~ 
 !Tmax=; 
1000 ~ 
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Appendix B IMPLEMENTATION OF OPTIMIZATION MODEL IN CHIP 
 

Using CHIP for solving the optimization problem (1)..(12) its constraints (1) .. (11) and the 
goal function (12) may be directly introduced to the problem declaration which is equivalent to 
the source code of the program. 
 
?-[proc_tlo.pl]. 
?-[ogra_tlo.pl]. 
top:- 
 wflags(72), 
X   ::0..2001,   % maximum size of domain, 
 Li_j::1..28,     % number of items, 
 Li_h::1..30,     % number of variants, 
 T   ::0..2000,   % optimization horizon, 
 Txx ::0..2000,   % makespace of the system scheduling, 
 Tal ::0..20,     % setup time, 
 X#=150, 
 write('Variable size variables'),nl, 
  stale(Li_j,Li_h,T,Tal), 
   write('   Number of items                 :'), 
   write(Li_j),nl, 
   write('   Number OF variants              :'), 
   write(Li_h),nl, 
   write('   Optimization horizon            :'), 
   write(T),nl, 
   write('   Setup time                      :'), 
   write(Tal),nl, 
write('Laoad coefficients'),nl, 
  li_t(Pj,[],Li_j,X), 
  czytaj('!dane\pj.txt',Pj,Li_j), 
  li_t(Zj,[],Li_j,X), 
  czytaj('!dane\zj.txt',Zj,Li_j), 
  li_t(Lg,[],1,X), 
  czytaj('!dane\lg.txt',Lg,Li_g), 
  li_t(Kj,[],Li_j,X), 
  czytaj('!dane\kj.txt',Kj,Li_j), 
write('Creating list of variables'),nl, 
  li_t(Yh,[],Li_h,1), 
  li_t(Xjh,[],L_h*Li_j,1), 
  li_t(Xhj,[],Li_h*Li_j,1), 
  li_t(Zjh,[],Li_h*Li_j,X), 
  li_t(Th,[],Li_h,X), 
write('Introducing constraints'), nl,  
  og_4(Zj,Zjh,Li_h,Li_j), 
  og_2(Tgh,Ygh,Txx,Li_h,Tal,Li_g),      
  og_7(Xhj,Lg,Kj,Li_h,Li_j,Li_h,1), 
og_5(T,Pj,Th,Th,Yh,Yh,Zjh,Xjh,Xhj,Xhj,Li_h,Li_j,Li_h*Li_j,1,1,0,1), 
write('Labeling of variables     '),nl, 
 przepisz(Po_1,Yh,Li_h,Po_2), 
 przepisz(Po_2,Xjh,Li_h*Li_j,Po_3), 
 przepisz(Po_3,Th,Li_h,Po_4), 
 p1(Po_4,Txx), 
 min_max(labeling(Po_1,0,most_constrained,indomain),Txx,0,700), 
write('Saving results          '),nl, 
  zapisz('!wyni\xhj.txt',Xhj,Li_h*Li_j,Li_j), 
  zapisz('!wyni\xjh.txt',Xjh,Li_h*Li_j,L_h), 
  zapisz('!wyni\zjh.txt',Zjh,Li_h*Li_j,L_h), 
  zapisz('!wyni\Th.txt' ,Th,Li_h,Li_h), 
  zapisz('!wyni\Yh.txt' ,Yh,Li_h,Li_h), 
  zapis1('!wyni\czas.txt',Txx),nl, 
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nl. 
 
stale(L_j,L_h,T,Tal):- 
 open('!dane\Stale.txt',S,'r'), 
   read(S,Pomo), 
   L_j#=Pomo, 
   read(S,Pomo1), 
   L_h#=Pomo1, 
   read(S,Pom23), 
   T#=Pomo2, 
   read(S,Pomo3), 
   Tal#=Pomo3, 
   close(S). 
 
li_t(L,L,0,0). 
% parameters : 1 – name of the list 2 – start list 3 – length of the list X – 
size of the domain 
 li_t([Zm|R],L,Nr,X):- 
   Zm::0..X, 
   Nr_1 is Nr-1, 
   if Nr_1#=0 then 
    li_t(R,L,Nr_1,0) 
   else 
    li_t(R,L,Nr_1,X). 
 
czytaj(Plik,Lista,D):- 
% Read "D" date from file name "Plik" to the list "Lista", 
 open(Plik,S,'r'), 
 li_c(Lista,[],D,S), 
 close(S). 
 
 li_c(L,L,0,0). 
  li_c([Zm|R],L,Nr,S):- 
  read(S,Pomo), 
  Zm#=Pomo, 
  Nr_1 is Nr-1, 
  if Nr_1#=0 then 
   li_c(R,L,Nr_1,0) 
  else 
   li_c(R,L,Nr_1,S). 
 
li_d(L,L,0,0,0). 
%  Display list „L” on the screen 
 li_d([Zm|R],L,Nr,Zakres,Licznik):- 
 L1 is Licznik+1, 
 write(Zm), 
 write(' '), 
 if L1 #= Zakres then 
  ( 
   writeln(' '), 
   write('     '), 
    L2 is 0 
  ) 
 else 
   L2 is L1, 
   Nr_1 is Nr-1, 
   if Nr_1 #>0 then 
    li_d(R,L,Nr_1,Zakres,L2). 
 
przepisz([A|B],[C|D],Zakres,Po_x):- 
 L1 is Zakres -1 , 
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 A = C, 
 if L1 #>0 then 
   przepisz(B,D,L1,Po_x) 
 else 
   Po_x = B. 
 
p1([A|B],Xxx):- 
 A = Xxx, 
 Xxx#>=0, 
 B= [] . 
 
zapisz(Plik,Lista,D,Linia):- 
% Write „D” date to file  "Plik" from list "Lista", 
  open(Plik,S,'w'), 
  li_z(Lista,[],D,S,Linia,0), 
  close(S). 
  
 li_z(L,L,0,0,0,0). 
  li_z(L,L,0,0,0,0). 
  li_z([Zm|R],L,Nr,S,Linia,Licznik):- 
  L1 is Licznik+1, 
  write(S,Zm), 
  write(S,' '), 
  if L1 #= Linia then 
   ( 
    writeln(S,' '), 
    L2 is 0 
   ) 
  else 
    L2 is L1, 
  Nr_1 is Nr-1, 
  if Nr_1#=0 then 
   li_z(R,L,Nr_1,0,0,0) 
  else 
   li_z(R,L,Nr_1,S,Linia,L2). 
 
zapis1(Plik,Dana):- 
open(Plik,S,'w'), 
 write(S,Dana), 
 close(S). 
%---- Constrain 12 ---------------------------------- 
%Parameters 
% 1 - [A|B]  - Th, 
% 2 - Yh, 
% 3 - Txx, 
% 4 - Li_h, 
% 5 - Tal, 
og_2([A|B],Yh,Txx,Li_h,Tal):- 
 s2([A|B],Yh,Txx,Tal,0,Wynik,Li_h,Po_1,Po_2), 
  Txx #>= Wynik. 
 
  s2([],[],_,S,S,_,[],[]). 
  s2([A|B],[C|D],Txx,Tal,S,R,Dlugo,Po_1,Po_2):- 
   Dl1    is Dlugo-1, 
   Txx #>= A + Tal * C + S, 
   if Dl1 #=0 then 
    ( 
     s2([],[],_,S+A+Tal*C,R,_,[],[]), 
     Po_1  = B, 
     Po_2  = D 
    ) 
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   else 
    s2(B,D,Txx,Tal,S+A+Tal*C,R,Dl1,Po_1,Po_2). 
 
%---- Constrain 1---------------------------------- 
%Parametry, 
% 1 - [A|B]  - Zj, 
% 2 – Zjh, 
% 3 - Li_h, 
% 4 - Licz   - current processing item, 
og_4([A|B],Zjh,Li_h,Licz):- 
   N is Licz - 1, 
   sum_4(A,Zjh,0,Wynik,Li_h,Po_1), 
   Wynik #= A, 
   if N #> 0 then 
    og_4(B,Po_1,Li_h,N). 
 
sum_4(_,[],S,S,_,[]). 
 sum_4(A,[H|T],S,R,Wszystkie,Po_1):- 
       W         is Wszystkie-1, 
       A  #>= H + S, % Zlecenie wieksze od czesci 
       if W #=0 then 
        ( 
         sum_4(_,[],H+S,R,_,[]), 
         Po_1 = T 
        ) 
       else 
         sum_4(A,T,H+S,R,W,Po_1). 
 
%---- Constrain 3,5,6,11--------------------------------- 
% 0   - T       -  czas optymalizacji 
% 1   - [A1|B1] -  Pj, 
% 2   - [C1|D1] -  Th, 
% 3   - Th, 
% 4   - [X|Y]   -  Yh, 
% 5   - Yh, 
% 6   - [A|B]   -  Zjh, 
% 7   - [C|D]   -  Xjh, 
% 8   - [E|F]   -  Xhj, 
% 9   - Xghj    -  Xhj, 
% 10  - Li_j, 
% 11  - Li_h, 
% 12  - Li_j, 
% 13  - Licz 
% 14  - War, 
% 15  - Kolumna 
og_5(T,[A1|B1],[C1|D1],Th,[X|Y],Yh,[A|B],[C|D],[E|F],Xhj,Li_h,Li_j,Licz,War,Kol
umna,St,St1):- 
     L1    is Licz - 1, 
     Ktory is Li_j*St+St1*Kolumna, 
     szukaj(T,C1,A1,X,A,C,[E|F],Ktory,Po_2), 
     if War #< L_gh then 
      ( 
       W1   is War+1, 
       Kol  is Kolumna, 
       S1   is 1, 
       S2   is 0, 
       Po_3 = Po_2, 
       Po_4 = Y, 
       Po_5 = [A1|B1], 
       Po_6 = D1 
      ) 
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     else 
      ( 
       W1    is 1, 
       Kol   is Kolumna +1, 
       S1    is 0, 
       S2    is 1, 
       Po_3  = Xghj, 
       Po_4  = Ygh, 
       Po_5  = B1, 
       Po_6  = Tgh 
      ), 
     if L1 #> 0 then 
      og_5(T,Po_5,Po_6,Tgh, 
           Po_4,Ygh,B,D,Po_3,Xghj,L_gh,Li_j,L1,W1,Kol,S1,S2). 
 
    szukaj(T,C1,A1,X,A,C,[E|F],Ktory,Po_2):- 
     K1 is Ktory - 1, 
     if K1 #> 0 then 
      szukaj(T,C1,A1,X,A,C,F,K1,Po_2) 
     else 
      ( 
        E        = C,         %     Xjh =  Xhj, 
        C1     #>= A1 * A,    %     Th  >= Pj*Zjh,   (3), 
        X * T  #>= C1,        %     Yh  =  0 Th  = 0 (6), 
        X      #>= E,         %     Yh  =  0 Xhj = 0 (11), 
        X      #>= C,         %     Yh  =  0 Xjh = 0 (11), 
        C * T  #>= A,         %     Xjh =  0 Zjh = 0 (5), 
        E * T  #>= A,         %     Xhj =  0 Zjh = 0,(5), 
        Po_2     = F 
      ). 
%---- Constrain 2 ---------------------------------- 
%Parametry 
% 1 - Xhj, 
% 2 - [A|B]  - N, 
% 3 – Kj, 
% 4 - Li_h, 
% 5 - Li_j, 
% 6 - Obe, 
% 7 - Licz, 
 
      og_7(Xghj,[A|B],Kj,Li_h,Li_j,Obe,Licz):- 
       Ob1 is Obe - 1, 
       s7(Xhj,Kj,0,Wynik,Li_j,Po_1), 
       Wynik #<= A, 
       if Licz #< Li_h then 
        ( 
         Li1   is Licz+1, 
         Po_2  =  [A|B] 
        ) 
       else 
        ( 
          Li1  is 1, 
          Po_2 =  B 
        ), 
        if Ob1 #> 0 then 
         og_7(Po_1,Po_2,Kj,Li_h,Li_j,Ob1,Li1). 
  s7([],[],S,S,_,[]). 
  s7([A|B],[C|D],S,R,Dlugo,Po_1):- 
   Dl1    is Dlugo-1, 
   if Dl1 #=0 then 
    ( 
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     s7([],[],S+A*C,R,_,[]), 
     Po_1  = B 
    ) 
   else 
    s7(B,D,S+A*C,R,Dl1,Po_1). 
 
 

 
Appendix C IMPLEMENTATION OF OPTIMIZATION MODEL IN OZ/MOZART 
 

declare W 
fun {W } 
 proc {$ R} 
  S X Z T Y Zj Pj Kj N Xo Ta Je Cz 
  in 
  S={List.make 5} 
  S=[ 
     26             % number of items 
     9              % number of variants 
     5              % number of machines (N) 
     150            % max time 
     1              % set up times  
    ] 
  % Structure of data 
    X={List.make  {List.nth S 1}*{List.nth S 2}} 
    Z={List.make  {List.nth S 1}*{List.nth S 2}} 
    T={List.make  {List.nth S 2}} 
    Y={List.make  {List.nth S 2}} 
    Zj={List.make {List.nth S 1}} 
    Pj={List.make {List.nth S 1}} 
    Kj={List.make {List.nth S 1}} 
    N ={List.make 1} 
    Xo={List.make {List.nth S 1}*{List.nth S 2}} 
    Ta={List.make {List.nth S 2}} 
    Je={List.make {List.nth S 2}} 
    Cz={List.make 1} 
  % Data for optimizations problem  
Zj=[ 9 9 7 7 10 10 9 9 7 7 7 7 7 10 10 9 9 7 7 7 7 7 7 3 3 3 ] 
Pj=[ 2 2 1 2 2 2 2 2 1 1 1 1 4 2 2 2 2 1 1 1 1 1 1 1 1 1 ] 
Kj=[ 2 2 1 1 2 2 2 2 1 1 1 1 4 2 2 2 2 1 1 1 1 1 1 1 1 1 ] 
N =[{List.nth S 3}] 
  % Auxiliary lists 
    {For 1 {List.nth S 2} 1 
     proc {$ I} 
      {List.nth Ta I}={List.nth S 5} 
      {List.nth Je I}=1 
     end 
    } 
  % Establishing of sizes of domains 
    X  :::0#1 
    Xo :::0#5 
    Y  :::0#1 
    Z  :::0#10 
    T  :::0#30 
    Cz :::0#150 
    R=r(var_X:X var_Z:Z var_y:Y var_t:T time:Cz) 
  % Additional calculation  
    {For 1 {List.nth S 2} 1   
     proc {$ J} 
     {For 1 {List.nth S 1 } 1  
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      proc {$ K} 
         % Xsj=Kj*Xojs 
          {List.nth Kj K}*{List.nth X (K-1)*{List.nth S 2}+J} 
           =: 
          {List.nth Xo (J-1)*{List.nth S 1}+K} 
         % if  Zsj=0 then Xsj=0 
          {List.nth Z (K-1)*{List.nth S 2}+J} 
           >=: 
          {List.nth X (K-1)*{List.nth S 2}+J} 
         %If Xsj=0 then Zsj=0 
          {List.nth S 4}*{List.nth X (K-1)*{List.nth S 2}+J} 
           >=: 
          {List.nth Z (K-1)*{List.nth S 2}+J} 
      end 
     } 
     end 
    } 
  % constraint 1 
    {For 1 {List.nth S 1} 1 
     proc{$ I} 
      {FD.sum 
 {List.take {List.drop Z (I-1)*{List.nth S 2}} {List.nth S 2}} 
        '=:' 
       {List.nth Zj I} 
      } 
  % additional constrain 1 
    {FD.atLeast 
     1 
 {List.take {List.drop X (I-1)*{List.nth S 2}} {List.nth S 2}} 
     1 
    } 
  % additional constrain 2 
    {FD.atMost 
     1 
 {List.take {List.drop X (I-1)*{List.nth S 2}} {List.nth S 2}} 
      1 
     } 
     end 
    } 
  % constrain  2 
    {For 1 {List.nth S 2} 1 
     proc {$ J} 
     {FD.sum 
 {List.take {List.drop Xo (J-1)*{List.nth S 1}} {List.nth S 1}} 
       '=<:' 
      {List.nth N 1} 
     } 
     end 
    } 
  % constrain 6 and additional constrain 3,4 
 
    {For 1 {List.nth S 2} 1 
     proc {$ I} 
     {List.nth T I} =<: {List.nth Y I}*{List.nth S 4} 
     {List.nth T I} >=: {List.nth Y I} 
     {List.nth T I} =<: {List.nth Cz 1} 
     end 
    } 
  % constrain 3 and 5 
    {For 1 {List.nth S 1} 1   
     proc {$ I} 
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     {For 1 {List.nth S 2} 1   
      proc {$ K} 
       {List.nth Pj I}*{List.nth Z (I-1)*{List.nth S 2}+K} 
         =<: 
       {List.nth T K} 
       {List.nth Pj I}*{List.nth Z (I-1)*{List.nth S 2}+K} 
        =<: 
       {List.nth S  4}*{List.nth X (I-1)*{List.nth S 2}+K} 
      end 
     } 
     end 
    } 
  % goal function 
    {FD.sumC 
     { Append Je {Append Ta [~1]}} 
     { Append T  {Append Y  Cz  }} 
      '=:' 
      0 
     } 
  {FD.distribute generic( order:min value:min ) {Append X Cz}} 
    {Browse Cz} 
    {Browse T} 
  end 
end 
Wynik={SearchBest {W} 
  proc{$ Old New} 
  {List.nth Old.czas 1} >: {List.nth New.czas 1} 
  end 
      } 
{Browse Wynik} 


