PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A re-analysis of Chibanian Pleistocene tracks from Vértesszőlős, Hungary, employing photogrammetry and 3D analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Vértesszőlős quarry, the Palaeolithic site where the “Samu” hominin fossil remains (Homo heidelbergensis) were found, is located in North West Hungary. The site is dated between the Early and Middle Pleistocene (ca. 310 ka). A short distance from where the Samu remains were found is an exposed surface of calcareous mudstone, preserving numerous fossil tracks made by a range of mammals and birds. Of particular interest are three elongate impressions - two potentially successive and one isolated. These tracks have previously been referred to either hominin or ursine trackmakers. Since bear pes tracks can superficially resemble human tracks, we attempted to discern the 3D morphology of the traces using digital photogrammetry. Our analysis suggests the isolated impression is likely the product of two superimposed tracks of a cloven hoofed ungulate. However, the two potentially successive tracks are more problematic. The highly weathered surface (first exposed in the 1960’s) has made interpretation difficult. Both impressions seem to possess a narrow, rounded end similar to the posterior heel margin of a human track. At the anterior end the impressions are broader, and bounded by smaller impressions that could be interpreted as toe marks. However, these two tracks differ considerably in their length/width ratios and are too widely spaced to be part of a single bipedal trackway. It is conceivable that one or both of these impressions may be highly weathered hominin tracks. However, given the highly weathered nature of the exposed surface, and the lack of morphological detail in the tracks, we cannot at this time confidently attribute the tracks to any specific trackmaker, despite our digital models of the tracks which provide a relatively objective means of analysis independent of prior assumptions.
Rocznik
Strony
75--83
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
  • Hungarian National Museum, Budapest 1088, Hungary
  • Research Center for Inland Seas, Kobe University, Kobe 657-8501, Japan
  • School of Biological and Environmental Sciences, Liverpool John Moores University L35UG, UK
  • School of Biological and Environmental Sciences, Liverpool John Moores University L35UG, UK
Bibliografia
  • 1. Bennet, M. R. & Morse, S., 2014. Human Footprints: Fossilised Locomotion? Springer, London, 216 pp.
  • 2. Buchwitz, M. & Voigt, S., 2018. On the morphological variability of Ichniotherium tracks and evolution of locomotion in the sistergroup of amniotes. PeerJ, 6: e4346.
  • 3. Buckley, L. G., McCrea, R. T. & Xing, L., 2018. First report of Ignotornidae (Aves) from the Lower Cretaceous Gates Formation (Albian) of western Canada, with description of a new ichnospecies of Ignotornis, Ignotornis canadensis ichnosp. nov. Cretaceous Research, 84: 209-222.
  • 4. Carretero, J. M., Rodríguez, L., García-González, R., Arsuaga, J. L., Gómez-Olivencia, A., Lorenzo, C., Bonmatí, A., Gracia, A., Martínez, I. & Quam, R., 2012. Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain). Journal of Human Evolution, 62: 242-255.
  • 5. CloudCompare (version 2.9) [GPL software]. (2017). Retrieved from http://www.cloudcompare.org/
  • 6. Dobosi, V., 2003. Changing environment - unchanged culture at Vértesszôlôs, Hungary. In: Burdukiewicz, J. M. & Ronen, A. (eds), Lower Palaeolithic small tools in Europe and the Levant. British Archaeological Reports, Oxford, pp. 101-111.
  • 7. Elbroch, M., 2003. Mammal Tracks & Sign: A Guide to North American Species. Stackpole Books, Pennsylvania, 792 pp.
  • 8. Falkingham, P. L., 2012. Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontologia Electronica, 15, 15.1.1T, 1-15.
  • 9. Falkingham, P. L., 2014. Interpreting ecology and behaviour from the vertebrate fossil track record. Journal of Zoology, 292: 222-228.
  • 10. Falkingham, P. L., 2016. Applying Objective Methods to Subjective Track Outlines. In: Falkingham, P. L., Marty, D. & Richter, A. (eds), Dinosaur Tracks: The Next Steps. Indiana University Press, Bloomington, pp. 72-81.
  • 11. Falkingham, P. L., Bates, K. T., Avanzini, M., Bennett, M., Bordy, E. M., Breithaupt, B. H., Castanera, D., Citton, P., Díaz-Martínez, I., Farlow, J. O., Fiorillo, A. R., Gatesy, S. M., Getty, P., Hatala, K. G., Hornung, J. J., Hyatt, J. A., Klein, H., Lallensack, J. N., Martin, A. J., Marty, D., Matthews, N. A., Meyer, C. A., Milàn, J., Minter, N. J., Razzolini, N. L., Romilio, A., Salisbury, S. W., Sciscio, L., Tanaka, I., Wiseman, A. L. A., Xing, L. D. & Belvedere, M., 2018. A standard protocol for documenting modern and fossil ichnological data. Palaeontology, 61: 469-480.
  • 12. Falkingham, P. L., Bates, K. T. & Farlow, J. O., 2014. Historical photogrammetry: Bird's Paluxy River Dinosaur chase sequence digitally reconstructed as it was prior to excavation 70 years ago. PLoS ONE, 9, 4: e93247.
  • 13. Falkingham, P. L. & Gatesy, S. M., 2020. Discussion: Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present by Lorenzo Marchetti et al. Earth-Science Reviews, 208, 103320. doi.org/10.1016/j. earscirev.2020.103320
  • 14. Gatesy, S. M. & Falkingham, P. L., 2017. Neither bones nor feet: track morphological variation and ‘preservation quality'. Journal of Vertebrate Paleontology, 37, 1: e13149298.
  • 15. Gierliński, G. D., Niedźwiedzki, G., Lockley, M. G., Athanassiou, A., Fassoulas, C., Dubicka, Z., Boczarowskic, A. & Bennett, M. R., 2017. Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete? Proceedings of the Geologists' Association, 128: 697-710.
  • 16. Haas, J., 2013. Geology of Hungary. Springer, Berlin, 268 pp.
  • 17. Helm, C. W., Cawthra, H. C., Combrink, X., Helm, C. J. Z., Rust, R., Steer, W. & van den Heever, A., 2020. Pleistocene large reptile tracks and probable swim traces on South Africa's Cape south coast. South African Journal of Science, 116: 6542.
  • 18. Hennig, G. J., Grün, R., Brunnacker, K. & Pécsi, M., 1983. Th230/U234 sowie ESR-Altersbestimmungen einiger Travertine in Ungarn. Eiszeitalter und Gegenwart, 33: 9-19.
  • 19. Kele, S., Markó, A., Cseh, J., Shen, C., Wu, C. & Bernasconi, M. S., 2016. Dating and clumped isotope-based temperature of a paleo-jacuzzi (Vértesszőlős Early Man site, Hungary). In: 5th International Clumped Isotope Workshop, 6-9 January, St. Petersburg, Florida, USA. [Editors unknown], p. 026. http://mgg.rsmas.miami.edu/groups/sil/abstracts.pdf
  • 20. Klein, H. & Lucas, S. G., 2015. Evolution of the semi-aquatic lifestyle in archosaurs - evidence from the tetrapod footprint record. In: McIlroy, D. (ed.), Papers from ICHNIA III. Geological Association of Canada, Miscellaneous Publication, 9: 105-113.
  • 21. Koenigswald, W. & Heinrich, W. D., 2007. Biostratigraphische Begriffe aus der Säugetierpaläontologie für das Pliozän und Pleistozän Deutschlands. Eiszeitalter und Gegenwart, 56: 96-115.
  • 22. Kretzoi, M. & Dobosi, V, 1990. Vértesszőlős - Man, Site, Culture. Akadémiai Kiadó, Budapest, 554 pp.
  • 23. Kretzoi, M. & Vértes, L., 1965. The role of vertebrate fauna and Palaeolithic industries of Hungary in Quaternary stratigraphy and chronology. Acta Geologica Hungarica, 9: 125-144.
  • 24. Lallensack, J. N., Sander, P. M., Knötschke, N. & Wings, O., 2015. Dinosaur tracks from the Langenberg Quarry (Late Jurassic, Germany) reconstructed with historical photogrammetry: Evidence for large theropods soon after insular dwarfism. Palaeontologia Electronica, 18, 2: 1-34.
  • 25. Ledoux, L. & Boudade-Maligne, M., 2015. The contribution of geometric morphometric analysis to prehistoric ichnology: the example of large canid tracks and their implication for the debate concerning wolf domestication. Journal of Archaeological Science, 61: 25-35.
  • 26. Lockley, M. G., Roberts, G. & Kim, J.-Y., 2008. In the footprints of our ancestors: an overview of the hominid track record. Ichnos, 15: 106-125.
  • 27. Lucas, G. L. & Hunt, A., 2007. Ichnotaxonomy of camel footprints. In: Lucas, S. G., Spielmann, J. A. & Lockley, M. G. (eds), Cenozoic vertebrate tracks and traces. New Mexico Museum of Natural History & Science, 42: 155-168.
  • 28. Mallison, H. & Wings, O., 2014. Photogrammetry in paleontology: a practical guide. Journal of Paleontological Techniques, 12: 1-31.
  • 29. Marchetti, L., Belvedere, M., Voigt, S., Klein, H., Castanera, D., Díaz-Martínez, I., Marty, D., Xing, L., Feola, S., Melchor, R. N., 2020. Reply to discussion of “Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present” by Marchetti et al. (2019). Earth-Science Reviews, 208: 103319.
  • 30. Marchetti, L., Belvedere, M., Voigt, S., Klein, H., Castanera, D., Díaz-Martínez, I., Marty, D., Xing, L., Feola, S., Melchor, R. N. & Farlow, J. O., 2019. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth-Science Reviews, 193: 109-145.
  • 31. Marty, D., Strasser, A. & Meyer, C. A., 2009. Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: implications for the study of fossil footprints. Ichnos, 16: 127-142.
  • 32. McDougall, L., 2015. The Tracker's Handbook: How to Identify and Trail any Animal, Anywhere. Skyhorse Publishing, New York, 368 pp.
  • 33. Mietto, P., Avanzini, M. & Rolandi, G., 2003. Palaeontology: Human footprints in Pleistocene volcanic ash. Nature, 422: 133.
  • 34. Morse, S. A., Bennett, M. R., Gonzalez, S. & Huddart, D., 2010. Techniques for verifying human footprints: reappraisal of pre-Clovis footprints in central Mexico. Quaternary Science Reviews, 29: 2571-2578.
  • 35. Roach, N. T., Hatala, K. G., Ostrofsky, K. R., Villmoare, B., Reeves, J. S., Du, A. B. D. R., Harris, J. W. K., Behrensmeyer, A. K. & Richmond, B. G., 2016. Pleistocene footprints show intensive use of lake margin habitats by Homo erectus groups. Scientific Reports, 6: 26374.
  • 36. Stringer, C., 2012. The status of Homo heidelbergensis (Schoetensack 1908). Evolutionary Anthropology, 21: 101-107.
  • 37. Vértes, L., 1964. Az őskőkor és az átmeneti kor emlékei Magyarországon [Remains of the Paleolithic in Hungary]. Akadémiai Kiadó, Budapest, 385 pp. [In Hungarian.]
  • 38. Wall-Scheffler, C. M., Wagnild, J. & Wagler, E., 2015. Human footprint variation while performing load bearing tasks. PLoS ONE, 10, 3: e0118619.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adf8d5ff-8bfb-47ba-8c56-321e69e2e174
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.