PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental impact of fertilizer use and slow release of mineral nutrients as a response to this challenge

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the most important issues relating to the influence of mineral fertilizers on both the natural environment and human and animal health. The physiological, environmental and economic impact of fertilizer production and application, resulted from a low assimilation of mineral components by crops, has been described. The research on the development and production of a large and diverse group of materials with slow-release properties that can increase the effectiveness of nutrient uptake, alleviate the negative influence of fertilizers on the environment and reduce labor and energy consumption associated with the use of conventional fertilizers, has been reviewed.
Rocznik
Strony
72--79
Opis fizyczny
Bibliogr. 100 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Zapata, F. (2008). Introduction to nitrogen management in agricultural systems. In: Guide. Nitr. Managem. Agric. Syst., Vienna: IAEA.
  • 2. Mosier, A.R., Syers, J.K. & Freney, J.R. (2004). Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment, St. Louis, MI: Island Press.
  • 3. Brown, L.R. (1999). Feeding nine billion. In L.R. Brown, C. Flavin, H. French (Eds.), State of the world: A Worldwatch Institute report on progress toward a sustainable society, New York: W.W. Norton & Company.
  • 4. United Nations, Department of Economic and Social Affairs, Population Division, (2013). World Population Prospects: The 2012 Revision, DVD Edition.
  • 5. International Fertilizer Industry Association, Statistics, Market Outlooks; http://www.fertilizer.org/MarketOutlooks. html (accessed Aug 26, 2015).
  • 6. van Cleemput, O., Zapata, F. & Vanlauwe, B. (2008). Use of tracer technology in mineral fertilizer management. In: Guide. Nitr. Managem. Agric. Syst., Vienna: IAEA.
  • 7. Dobermann, A. (2005). Nitrogen use efficiency - state of the art. In: Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt: IFA.
  • 8. Smil, V.A. (1999). Nitrogen in crop production: An account of global flows. Global Biogeochem. Cycl., 3, 647–662. DOI: 10.1029/1999GB900015.
  • 9. Fan, X., Li, F., Liu, F. & Kumar, D. (2004). Fertilization with a new type of coated urea: Evaluation for nitrogen efficiency and yield in winter wheat. J. Plant Nutr., 27, 853–865. DOI: 10.1081/PLN-120030675.
  • 10. Hauck, R.D. (1985). Slow release and bio-inhibitor-amended nitrogen fertilizers. In: O.P. Engelstad (Ed.), Fert. Technol. Use, Madison, WI: SSSA.
  • 11. Shaviv, A. & Mikkelsen, R.I. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation – a review. Fert. Res., 35, 1–12. DOI: 10.1007/BF00750215.
  • 12. Trenkel, M.E. (2010). Controlled-release and stabilized fertilizers in agriculture, Paris: IFA.
  • 13. Chien, S.H., Prochnow, L.I., Tu, S. & Snyder, C.S. (2011). Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutr. Cycl.Agroecosyst., 89, 229–255. DOI: 10.1007/s10705-010-9390-4.
  • 14. Finck, A. (1992). Fertilizers and their efficient use. In: D.J. Halliday, M.E. Trenkel, W. Wichmann, (Eds.). World Fert. Use Man., Paris: IFA.
  • 15. Shaviv, A. (2000). Advances in controlled release fertilizers. Adv. Agron., 71, 1–49.
  • 16. Górecki, H. (2003). The environmental impact of fertilizer production and use. Przem. Chem., 82(8–9), 833–836.
  • 17. Hofman, G. & van Cleemput, O. (2004). Nitr. Soil Plant. Paris: IFA.
  • 18. Follett, J.R., Follett, R.F. & Herz, W.C. (2010). Environmental and human impacts of reactive nitrogen. In: J.A. Delgado, R.F. Follett (Eds.), Adv. Nitr. Managem. Water Qual., Ankeny, IA: SWCS.
  • 19. EEA Raport No7/2005. (2005). Source apportionment of nitrogen and phosphorus inputs into the aquatic environment, Copenhagen: EEA.
  • 20. Townsend, A.R., Howarth, R.W., Bazzaz, F.A., Booth, M.S., Cleveland, C.C., Collinge, S.K., Dobson, A.P., Epstein, P.R., Holland, E.A., Keeney, D.R., Mallin, M.A., Rogers, C.A., Wayne, P. & Wolfe, A.H. (2003). Human health effects of a changing global nitrogen cycle, Ecol. Environ., 1(5), 240–246. http://dx.doi. org/10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2
  • 21. Smith, J.E. & Beutler, E. (1966). Methaemoglobin formation and reduction in man and various animal species. Am. J. Physiol., 210(2), 347–350.
  • 22. Newbould, P. (1989). The use of nitrogen fertilizer in agriculture. Where do we go practically and ecologically? Plant and Soil. 115, 297–311. DOI: 10.1007/BF02202596.
  • 23. Forman, D. (1989). Are nitrates a significant risk factor in human cancer?, Cancer Surv., 8, 443–458.
  • 24. Freibauer, A. (2003). Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. Eur. J. Agron., 19(2), 135–160. DOI: 10.1016/S1161-0301(02)00020-5.
  • 25. Sharpley, A.N. & Menzel, R.G. (1987). The impact of soil and fertiliser phosphorus on the environment. Adv. Agron., 41, 297–324.
  • 26. Sims, J.T. (1998). Phosphorus soil testing: innovations for water quality protection. Commun. Soil Sci. Plant Anal., 29, 1471–1478. DOI: 10.1080/00103629809370044.1471–1478. DOI: 10.1080/00103629809370044.
  • 27. Hedley, M. & McLaughlin, M. (2005). Reactions of phosphate fertilizers and by-products in soils. In: J.T. Sims, A.N. Sharpley (Eds), Phosph.: Agric. Environ., Madison, WI: CSSA, SSSA.
  • 28. Chien, S.H., Prochnow, L.I. & Cantarella, H. (2009). Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron., 102, 267–322. DOI: 10.1016/S0065-2113(09)01008-6.
  • 29. Mortvedt, J.J. (1987). Cadmium levels in soils and plants from some long-term soil fertility experiments in the United States. J. Environ. Qual., 16, 137–143. DOI:10.2134/jeq1987.00472425001600020008x.
  • 30. Directive 2000/60/EC of the European Parliament and of the Council. (2000). DzU UE L00.327.
  • 31. Directive 91/676/EWG of the European Parliament. (1991).
  • 32. Matson, P.A., Naylor, R., Ortiz-Monasterio, I. (1998). Integration of environmental, agronomic and economic aspects of fertilizer management. Science 280, 112–115. DOI: 10.1126/science.280.5360.112.
  • 33. Craswell, E.T. & Godwin, D.C. (1984). The efficiency of nitrogen fertilizers applied to cereals in different climates. Adv. Plant Nutr., 1, 1–9.
  • 34. Roberts, T.L. (2008). Improving nutrient use efficiency. Turk. J. Agric. For., 32, 177–182.
  • 35. Association of American Plant Food Control Officials (AAPFCO). (1997). Official Publication No. 50, T-29. West Lafayette, IN, USA: AAPFCO.
  • 36. Griessbach, R. & Eissner, W. (1926). DE Patent No. 431585. Berlin: DPMA.
  • 37. Rohner, L.V. & Wood, A.P. (1947). US Patent No. 2415705. Washington, D.C.: USPTO.
  • 38. Clapp, J.P. (1991). Properties and uses of liquid ureatriazone-based nitrogen fertilizers Fert. Res. 28, 229–233. DOI: 10.1007/BF01049755.
  • 39. Jahns, T., Ewen, H. & Kaltwasser, H. (2003). Biodegradability of urea-aldehyde condensation products. J. Polym. Environ. 11(4), 155–159. DOI: 10.1023/A:1026052314695.
  • 40. Koivunen, M.E. & Horwath, W.R. (2004). Effect of management history and temperature on the mineralization of methylene urea in soil. Nutr. Cycling Agroecosyst. 68(1), 25–35. DOI: 10.1023/B:FRES.0000012232.56756.f0.
  • 41. Alexander, A. & Helm, H.U. (1990). Ureaform as a slow release fertiliser: A review. J. Plant Nutr. Soil Sci. 153(4), 249–255. DOI: 10.1002/jpln.19901530410.
  • 42. Lunt, O.R. & Clark, S.B. (1969). Properties and value of 1,1-diureido isobutane (IBDU) as a long-lasting nitrogen fertilizer. J. Agric. Food Chem., 17(6), 1269–1271. DOI: 10.1021/jf60166a053.
  • 43. Jahns, T. & Schepp, R. (2001). Isobutylidenediurea degradation by Rhodococcus erythropolis. Biodegradation 12(5), 317–323. DOI: 10.1023/A:1014335602141.
  • 44. Kikushima, T., Hatano, T. & Takahashi, A. (1970). JP Patent No. 45000874 B4 19700112. Tokyo: JPO.
  • 45. Ushioda, T. (1969). Development and commercial scale of CDU (slow acting fertilizer) technology. Jpn. Chem. Q. 5(4), 27–32.
  • 46. Shimizu, T. (1987). Glycoluril as a slow release nitrogen fertilizer. Soil. Sci. Plant Nutr. 33, 291–298. DOI: 10.1080/00380768.1987.10557574.
  • 47. Okuwaki, A. & Okabe, T. (1991). Development of a new route to oxamide from coal and ammonia, Trends Inorg. Chem. 2, 145–158.
  • 48. Mosdell, D.K., Daniel, W.H. & Freeborg, R.P. (1987). Melamine and ammeline as nitrogen sources for turfgrasses. Fert. Res. 11(1), 79–86. DOI: 10.1007/BF01049566.
  • 49. Hayase, T. & Kurihara, J. (1972). JP Patent No. 47006377 B4 19720223. Tokyo: JPO.
  • 50. Hepburn, C., Young, S. & Arizal, R. (1987). Rubber matrix for the slow release of urea fertilizer. Am. Chem. Soc., Div. Polym. Chem. 28, 94–96.
  • 51. Hepburn, C. & Arizal, R. (1988). Slow-release fertilizers based on natural rubber. Br. Polym. J. 20(6), 487–491. DOI: 10.1002/pi.4980200605.
  • 52. Hepburn, C. & Arizal, R. (1989). A controlled-release urea fertilizer. Part 1: The encapsulation of urea fertilizer by rubber: processing and vulcanization procedures, Plast. Rubber Compos. Process. Appl. 12(3), 129–134.
  • 53. Hepburn, C. & Arizal, R. (1989). A controlled-release urea fertilizer. Part 2: Preparation of the rubber-urea matrix and the split-feeding mixing technique. Plast. Rubber Compos. Process. Appl. 12(3), 135–140.
  • 54. Hepburn, C., Young, S. & Arizal, R. (1989). A controlled-release urea fertilizer. Part 3: Soil leaching and growth trials Plast. Rubber Compos. Process. Appl. 12(3), 141–146.
  • 55. Hassan, Z.A., Young, S.D., Hepburn, C. & Arizal, R. (1990). An evaluation of urea-rubber matrices as slow-release (1990). An evaluation of urea-rubber matrices as slow-release
  • 56. Abdel Bary, E.M., El-Shekeil, A.G., Helaly, F.M., Sarhan, Plast. Rubber Compos. Process. Appl. 12(3), 141–146. rubber formulations for urea. Plast. Rubber Compos. Process. Appl. 17(2), 99–107.
  • 57. Helaly, F.M. & Abo-Elela, S.I. (1990). Protection of surface water from eutrophication via controlled release of phosphate fertilizer. J. Control. Rel., 12(1), 39–44. DOI: 10.1016/0168-3659(90)90181-R.
  • 58. Helaly, F.M., Abdel-Bary, E.M., Sarhan, A.A. & Abdel-Razik, H.H. (1993). Minimization of water pollution and environmental problems via controlled-release styrene-butadiene rubber formulations containing ammonium nitrate. Plast. Rubber Compos. Process. Appl. 19(2), 111–115.
  • 59. Helaly, F.M. & Nashar, D.E. (2002). Slow-release rubber formulations containing ZnSO4. Polym. Test. 21(8), 867–875.
  • 60. Abd El-Kader, A.A. & Attia, M. (2006). Nutrients release and biological aspects of butadiene styrene - fertilizer mixtures. Egypt. J. Soil Sci. 46(1), 69–77.
  • 61. Joyce, D.C., Bell, L.C., Asher, C.J. & Edwards, D.G. (1988). Thermoplastic matrix controlled-release zinc fertilizers. I. Laboratory characterization. Fert. Res. 17(3), 235–250. DOI: 10.1007/BF01049580.
  • 62. Joyce, D.C., Bell, L.C., Edwards, D.G. & Asher, C.J. (1988). Thermoplastic matrix controlled-release zinc fertilizers. II. Effect of soil and formulation characteristics on zinc emission. Fert. Res. 17(3), 251–266. DOI: 10.1007/BF01049581.
  • 63. Joyce, D.C., Asher, C.J., Edwards, D.G. & Bell, L.C. (1988). Thermoplastic matrix controlled-release zinc fertilizers. III. Zinc nutrition of linseed on a sand and a clay. Fert. Res. 17(3), 267–283. DOI: 10.1007/BF01049582.
  • 64. Perez, M.G., Rueda, J.I.P, Mateos, F.B. & Marin, J.P. (1999). Slow-release fertilizer in the form of emulsion. Chem. Biochem. Eng. Q. 13(1), 21–26.
  • 65. Lunt, O.R., Kofranek, A.M. & Clark, S.B. (1964). Availability of minerals from magnesium ammonium phosphates J. Agric. Food Chem. 12(6), 497–504. DOI: 10.1021/jf60136a005.
  • 66. de-Bashan, L.E. & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use Authenticated Download Date 6/22/16 6:49 PM as fertilizer. Water Res. 38, 4222–4246. DOI:10.1016/j.watres. 2004.07.014.
  • 67. Grzmil, B. & Wronkowski, J. (2004). Processes for removing and recovering phosphates from wastewaters. Chem. Rev. 83(6), 275–280.
  • 68. Matynia, A., Hutnik, N., Piotrowski, K., Wierzbowska, B. & Koralewska, J. (2009). Recovery of phosphate ions by continuous precipitation and crystallization of struvite in DTM type crystallizer with jet pump. Progr. Environ. Sci. Technol. 2, 986–993.
  • 69. Rahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M. & Ra, C.S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arab. J. Chem. 7, 139–155. DOI: 10.1016/j.arabjc.2013.10.007.
  • 70. Solihin, Zhang, Q., Tongamp, W. & Saito, F. (2010). Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow-release fertilizers. Ind. Eng. Chem. Res. 49(5), 2213–2216. DOI: 10.1021/ie901780v.
  • 71. Tongamp, W., Zhang, Q. & Saito, F. (2008). Mechanochemical route for synthesizing nitrate form of layered double hydroxide. Powder Technol. 185(1), 43–48. DOI: 10.1016/j.powtec.2007.09.013.
  • 72. Zhang, Q., Solihin & Saito, F. (2009). Mechanochemical synthesis of slow-release fertilizers through incorporation of alumina composition into potassium/ammonium phosphates. J. Amer. Ceram. Soc. 92(12), 3070–3073. DOI: 10.1111/j.1551-2916.2009.03291.x.
  • 73. Solihin, Zhang, Q., Tongamp, W. & Saito, F. (2010). Mechanochemical synthesis of kaolin-KH2PO4 and kaolin-NH4H2PO4 complexes for application as slow release fertilizer. Powder Technol. 212(2), 354–358. DOI: 10.1016/j.powtec.2011.06.012.
  • 74. Yuan, W., Solihin, Zhang, Q., Kano, J. & Saito, F. (2014). Mechanochemical formation of K-Si-Ca-O compound as Mechanochemical formation of K-Si-Ca-O compound as a slow-release fertilizer. Powder Technol. 260, 22–26. http://dx.doi.org/10.1016/j.powtec.2014.03.072
  • 75. Bolan, N.S., Hedley, M.J. & Loganathan, P. (1993). Preparation, forms and properties of controlled-release phosphate fertilizers. Fert. Res. 35, 13–24. DOI: 10.1007/BF00750216.
  • 76. Rajan, S.S.S., Watkinson, J.H. & Sinclair, A.G. (1996). Phosphate rock for direct application to soils. Adv. Agron. 57, 77–159. DOI: 10.1016/S0065-2113(08)60923-2.
  • 77. Skut, J., Hoffmann, J., Hoffmann, K. (2011). Evaluation of the progress of sulfuric acid acidulation of phosphate rocks. Przem. Chem. 90(5), 1024-1028.
  • 78. Skut, J., Hoffmann, J. & Hoffmann, K. (2012). Temperature and moisture influence on the curing process of PAPR type fertilizer products. Pol. J. Chem. Technol. 14(3), 77–82. DOI: 10.2748/v10026-012-0106-1.
  • 79. Ando, J. (1987). Thermal phosphates. In: F.T. Nielsson (Ed.), Man. Fert. Proces. New York: Marcel Dekker Inc.
  • 80. Ranawat, P., Kumar, K.M. & Sharma, N.K. (2009). A process for making slow-release phosphate fertilizer from low-grade rock phosphate and siliceous tailings by fusion with serpentinite. Curr. Sci. 96(6), 843–848.
  • 81. Guimond, R.J. & Hardin, J.M. (1989). Radioactivity released from phosphate-containing fertilizers and from gypsum. Int. J. Radiat. Appl. Instrum. Part C, 34(2), 309–315. DOI: 10.1016/1359-0197(89)90238-5.
  • 82. Scholten, L.C. & Timmermans, C.W.M. (1996). Natural radioactivity in phosphate fertilizers. Fert. Res. 43, 103–107. DOI: 10.1007/BF00747688.
  • 83. Ioannides, K.G., Mertzimekis, T.J., Papachristodoulou, C.A. & Tzialla, C.E. (1997). Measurements of natural radioactivity in phosphate fertilizers. Sci. Total Environ. 196(1), 63–67. DOI: 10.1016/S0048-9697(96)05390-9.
  • 84. Roselli, C., Desideri, D. & Meli, M.A. (2009). Radiological characterization of phosphate fertilizers: Comparison between alpha and gamma spectrometry. Microchem. J. 91(2), 181–186. DOI: 10.1016/j.microc.2008.10.003.
  • 85. Wacławska, I. & Szumera, M. (2003), Thermal analysis of glasses for proecological applications. J. Thermal Anal. Calorim. 72(3), 1065–1072.
  • 86. Wacławska, I. & Szumera, M. (2009). Reactivity of silicate-phosphate glasses in soil environment. J. Alloys Compd. 468(1–2), 246–253. DOI: 10.1023/A:1025059424522
  • 87. Sułowska, J., Wacławska, I. & Olejniczak, Z. (2013). Structural studies of copper-containing multicomponent glasses from the SiO2-P2O5-K2O-CaO-MgO system. Vib. Spectrosc. 65, 44–49. http://dx.doi.org/10.1016/j.vibspec.2012.11.013
  • 88. Sułowska, J., Wacławska, I. & Olejniczak, Z. (2014). Effect of glass composition on the interactions between structural elements in Cu-containing silicate-phosphate glasses. J. Thermal Anal. Calorim. 116(1), 51–59. DOI: 10.1007/s10973-014-3705-7.
  • 89. Mandlule, A., Doehler, F., van Wuellen, L., Kasuga, T. & Brauer, D.S. (2014). Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J. Non-Cryst. Solids 392–393, 31–38. DOI: 10.1016/j.jnoncrysol.2014.04.002.
  • 90. Qiu, Q. & Hlavacek, V. (2010). Energy estimation on CRN process of fly ash as a slow-release nitrogen fertilizer. Ind. Eng. Chem. Res. 49(12), 5939–5944. DOI: 10.1021/ie100391y.
  • 91. Virkar, A.N., Misra, S.N., Sharma, N., Ray, H.S. & Paul, A. (1987). Thermal analysis and x-ray diffraction studies on controlled release fertilizers prepared by incorporating nutrients into blast furnace slag. Thermochim. Acta 111, 135–142. DOI: 10.1016/0040-6031(87)88042-5.
  • 92. Yao, Y., Hamada, E., Sato, K., Akiyama, T. & Yoneyama, T. (2014). Identification of the major constituents of fused potassium silicate fertilizer. ISIJ Int. 54(4), 990–993. DOI: http://dx.doi.org/10.2355/isijinternational.54.990.
  • 93. Ming, D.W. & Allen, E.R. (2001). Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. Rev. Mineral. Geochem. 45, 619–654. DOI: 10.2138/rmg.2001.45.18.
  • 94. Pereira, E.I., Minussi, F.B., da Cruz, C.C.T., Bernardi, A.C.C. & Ribeiro, C. (2012). Urea-montmorillonite-extruded nanocomposites: a novel slow-release material. J. Agric. Food Chem. 60(21), 5267–5272. DOI: 10.1021/jp507826j.
  • 95. Ray, S.K., Varadachari, Ch. & Ghosh, K. (1993). Novel slow-releasing micronutrient fertilizers. 1. Zinc compounds. Ind. Eng. Chem. Res. 32(6), 1218–1227. DOI: 10.1021/ie00018a030.
  • 96. Ray, S.K., Varadachari, Ch. & Ghosh, K. (1997). Novel slow-releasing micronutrient fertilizers. 2. Copper compounds. J. Agric. Food Chem. 45(4), 1447–1453. DOI: 10.1021/jf960499.
  • 97. Bhattacharya, I., Bandyopadhyay, S., Varadachari, Ch. & Ghosh, K. (2007). Development of a novel slow-releasing ironmanganese fertilizer compound. Ind. Eng. Chem. Res. 46(9), 2870–2876. DOI: 10.1021/ie060787n.
  • 98. Bhattacharya, I., Bandyopadhyay, S., Ghosh, K. & Varadachari, Ch. (2008). New slow-releasing molybdenum fertilizer. J. Agric. Food Chem. 56(4), 1343–1349. DOI: 10.1021/jf072878g.
  • 99. Chandra, P.K., Ghosh, K. & Varadachari, Ch. (2009). A new slow-releasing iron fertilizer. Chem. Eng. J. 155(1–2), 451–456. DOI: 10.1016/j.cej.2009.07.017.
  • 100. Grzmil, B.U. & Kic, B. (1995). Potassium, sodium and calcium polyphosphates with controlled solubility. J. Agric. Food Chem. 43(9), 2463–2470. DOI: 10.1021/jf00057a028. Chem. 43(9), 2463–2470. DOI: 10.1021/jf00057a028.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adf72440-e6b3-4b2e-b82d-b3c1cf33846e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.