PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion of transparent electrodes study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work reports a study of corrosion lifetime of transparent electrodes deposited on the microscopic glass substrate. A procedure was developed for obtaining the transparent electrode by spray method. The corrosion lifetime variation in the presence of 1.5 M NaOH medium chemically degraded at room temperature before and after gamma irradiation was determined by measuring the evolution of the structure, electrical and optical characteristics. The mean values of transmittance up to 25 month before and after irradiation were calculated 91% ±6% and 96±7%, respectively. The average value of resistivity after corrosion and age time after -irradiation was 0.016±9% Ω.cm and 0.017± 4% at 1.0 kHz. No significant changes observed for 27 hr corrosion and 25 month age time of the transparent electrodes in NaOH solution.
Słowa kluczowe
Rocznik
Strony
19--27
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
  • National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Solid State and Electron Accelerators, Nasr City, Cairo, Egypt
  • National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Solid State and Electron Accelerators, Nasr City, Cairo, Egypt
Bibliografia
  • [1] M. Panizza, G. Cerisola, Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 2. Bulk electrolysis experiments, Electrochim. Acta, 49 (2004) 3221-26.
  • [2] L. Cirıaco, C. Anjo, J. Correia, M. J. Pacheco, and A. Lopes, Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochim. Acta, 54:5 (2009)1464-72.
  • [3] A. F. Maged, L. A. Nada, M. Amin. 2015. Effect of gamma radiation in undoped SnO2 thin films. Phys. Sci. Int. J 7 (1) (2015) 20–27.
  • [4] Y. Li, F. Lian, L. Ma, C. Liu, L. Yang, X. Sun, K. Chou, Fluoroethylene Carbonate as Electrolyte Additive for Improving the electrochemical performances of High-Capacity Li1.16[Mn0.75Ni0.25]0.84O2 Material, Electrochim. Acta, 168 (2015)261-270.
  • [5] Z. Yang, S. Zhao, W. Jiang, X. Sun, Y. Meng, C. Sun and S. Ding, Carbon-supported SnO2 nanowire arrays with enhanced lithium storage properties, Electrochim. Acta., 158 (2015) 321.
  • [6] E. Comini, G. Faglia, G. Sberveglieri, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 81 (2002) 1869.
  • [7] A. Kay, M. Gratzel, Dye-Sensitized Core−Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide, Chem. Mater., 14:7 (2002) 2930-35.
  • [8] A. F. Maged, S. A. Fayek, H. M. Hosni, M. M. Ibrahim, L. A. M. Nada, and M Amin, Natural dye solar cell: Conductive transparent oxide, photo anode, sensitizers, electrolyte, and γ-radiation response, Int. J. Green Energy, (2021) 1-13.
  • [9] J. Kong, Z. Rui, H. Ji and Y. Tong, Facile synthesis of ZnO/SnO2 hetero nanotubes with enhanced electrocatalytic property Catal. Today. 258 (2015) 75-82.
  • [10] A. Boumeddiene, F. Bouamra, M. Rérat, H. Belkhir, Structural and electronic properties of Sb-doped SnO2 (1 1 0) surface: A first principles study, Appl. Surf. Sci., 284 (2013) 581-87.
  • [11] X. Liu, G. Zhou, S. W. Or, Y. Sun, Fe/amorphous SnO2 core–shell structured nanocapsules for microwave absorptive and electrochemical performance, RSC Adv., 4 (2014) 51389.
  • [12] B. Yang, J. Wang, C. Jiang, J. Li, G. Yu, S. Deng, S. Lu, P. Zhang, C. Zhu, Q. Zhuo, Electrochemical mineralization of perfluorooctane sulfonate by novel F and Sb co-doped Ti/SnO2 electrode containing Sn-Sb interlayer, Chem. Eng. J., 316 (2017) 296-304.
  • [13] L. Xu, H. Duan, Y. Wang, Y. Lian, Effects of Reaction Conditions on the Morphology and Property of Sb Doped SnO2 Nanorods Anode, Int. J. Electrochem. Sci., 13 (2018) 2731 – 2744.
  • [14] F. Kormos, I. Rotariu, G. Tolai, M. Pávai, C. Roman, E. Kálmán, The stability of SnO2:Sb (ATO) nanostructured protecting films on glass, Dig. J. Nanomater. Biostructures 1:3 (2006) 107 – 114.
  • [15] G. Vourlias, N. Pistofidis, G. Stergioudis, E.K. Polychroniadis, Structural study near the film/substrate interface of a plasma sprayed tin coating on low carbon steel, J. Alloys Compd., 416 (2006) 183-187.
  • [16] S. T. Rajan, A. Arockiarajan, Thin film metallic glasses for bioimplants and surgical tools: A review. J. Alloys Compd., 876 (2021) 159939.
  • [17] K. V. Chauhana, S. K. Rawala, A review paper on tribological and mechanical properties of ternary nitride based coatings. Procedia Technol. 14 (2014) 430 – 437.
  • [18] S. K. Singh, S. Chattopadhyaya, A. Pramanik, S. Kumar, Wear behavior of chromium nitride coating in dry condition at lower sliding velocity and load. Int. J. Adv. Manuf. Technol., 96(5) (2018)1665-1675.
  • [19] C. Lorenzo-Martin, O. Ajayi, A. Erdemir, G.R. Fenske, R. Wei, Effect of microstructure and thickness on the friction and wear behavior of CrN coatings. Wear, 302(1-2) (2013) 963-971.
  • [20] P. Yiu, W. Diyatmika, N. Bönninghoff, Y. Lu, B. Lai, J. P. Chu, Thin film metallic glasses: Properties, applications and future, J. Appl. Phys. 127:3, (2020) 030901.
  • [21] I. A. Rastegaev, I. I. Rastegaeva, D. L. Merson, V. A. Korotkov, The Wear Features of a Plasma Thin-Film Coating on High-Speed Steel, J. Frict. Wear, 41(2) (2020) 160–168.
  • [22] L.-M.Berger, Hard but slippery-titanium hardmetal coatings have industrial potential. Met. Powder Rep., 60:5 (2005) 28–31.
  • [23] E. Laouini Æ M. Hamdani Æ M. I. S. Pereira Æ J. Douch ÆM. H. Mendonc¸ Æ Y. Berghoute Æ R. N. Singh, Electrochemical impedance spectroscopy investigation of spinel type cobalt oxide thin film electrodes in alkaline medium, J. Appl. Electrochem. 38 (2008) 1485–1494.
  • [24] A. F. Maged, M. Amin, H. Osman, L. A. M. Nada, Plasmonic nanostructures of SnO2: Sb thin film under gamma radiation response. Materials Science-Poland 38 (1) (2020) 62–72.
  • [25] S. K. Chauhan, R. Kumar, S. Nadanasabapathy, A. S. Bawa, Detection Methods for Irradiated Foods, Compr. Rev. Food Sci, 8(1) (2009) 4-16.
  • [26] A. G. Chmielewski, M. Haji-Saeid, Radiation technologies: past, present and future. Radiat. Phys. Chem. 71(1-2) (2004) 17-21.
  • [27] A.F. Maged, H.M. Hosni, S.A. Fayek, M. Amin, H. Osman, L.A.M. Nada, Investigation of TiO2 nanoparticles: thermal kinetics and gamma radiation effects. Silicon. 11(1) (2019) 313–322.
  • [28] A.F. Maged, M. R. Balboul, S. M. Alyamany, Investigation of the Collected Soot Powder: Thermal Kinetics Analysis, γ-adiation Treatment, and Clean Environment. Emiss. Control Sci. Technol. 7 (2021)117–123.
  • [29] A.F. Maged, N.L. Moussa, A. Abdel-Galil, Optical characterization and γ-irradiation response of conductive transparent oxide of SnO2:Sb films, Radiat. Phys. Chem. 179 (2021) 109267.
  • [30] M. Kojima, H. Kato, M. Gatto, Blackening of tin oxide thin films heavily doped with antimony, Phil. Mag. B, 68:2 (1993) 215-222.
  • [31] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Grätzel, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C, 111 (2007) 6550.
  • [32] F. Kormos, I. Rotariu, G. Tolai, M. Pávai, C. Roman, E. Kálmán, The stability of SnO2:Sb (ATO) nanostructured protecting films on glass, Dig. J. Nanomater. Biostructures, 3 (2006) 107 – 114.
  • [33] A. Korjenic, K. S. Raja, Electrochemical stability of fluorine doped tin oxide (FTO) coating at different ph conditions, J. Electrochem. Soc. 166 (6) (2019)169-184.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adf222fa-bdaa-4559-a7e6-283349e4fbf8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.