PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water quality assessment in the Bedadung River using self-purification optimisation and water quality allocation in Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research analyses the characteristics of pollution sources and evaluates the water quality of the Bedadung River at the Perumdam Tirta Pandalungan water intake, as a component of the municipal waterworks for the Jember Regency. Utilising self-purification optimisation with linear programming and the Indonesian water quality classification, the study unfolds in a systematic fashion. The research was broken down into the following stages: (1) analysis of the characteristics and distribution of pollution sources, (2) capacity determination using mass balance and the Streeter-Phelps method, and (3) optimisation of organic pollution sources. The input data for the study comprised biochemical oxygen demand (BOD), discharge, river profile, and dissolved oxygen (DO). The pollution source identification results around the Bedadung River segment showed that 13 wastewater monitoring points were dominated by domestic activities with quality (BOD) in the range 1.01–3.18 mg∙dm-3. This did not exceed the established domestic wastewater quality standards in Indonesia. The total pollution load capacity - BOD at the Perumdam Tirta Pandalungan water intake in the Sumbersari (T2) and Kaliwates (T3) segments was determined using self-purification optimisation and it exceeded class I designation standard for river water quality established by the Indonesian government. The maximum BOD value using self-purification optimisation in the Sumbersari (T2) segment was 11.44 mg∙dm-3 compared to 13.45 mg∙dm-3 in the Kaliwates (T3) segment. The maximum BOD for class I water quality is 2 mg∙dm-3. The class I water quality standard is thus more stringent in maintaining river water quality compared to self-purification.
Wydawca
Rocznik
Tom
Strony
71--78
Opis fizyczny
Bibliogr. 45 poz., mapa, rys., tab., wykr.
Twórcy
autor
  • University of Jember, Faculty of Agricultural Technology, Jl. Kalimantan No. 37, Krajan Timur, Sumbersari, Kec. Sumbersari, Jember Regency, East Java 68121, Indonesia
  • Sebelas Maret University, Faculty of Mathematics and Natural Sciences, Jl. Ir. Sutami No. 36, Jebres, Kec. Jebres, Surakarta City, Centre Java 57126, Indonesia
  • Wijaya Kusuma University, Faculty of Engineering, Jl. Dukuh Kupang XXV No. 54, Dukuh Kupang, Kec. Dukuhpakis, Surabaya City, East Java 60225, Indonesia
  • University of Jember, Faculty of Agricultural Technology, Jl. Kalimantan No. 37, Krajan Timur, Sumbersari, Kec. Sumbersari, Jember Regency, East Java 68121, Indonesia
  • University of Jember, Postgraduate Program, Jl. Kalimantan No. 37, Krajan Timur, Sumbersari, Kec. Sumbersari, Jember Regency, East Java 68121, Indonesia
  • University of Jember, Faculty of Agricultural Technology, Jl. Kalimantan No. 37, Krajan Timur, Sumbersari, Kec. Sumbersari, Jember Regency, East Java 68121, Indonesia
Bibliografia
  • Angello, Z.A., Behailu, B.M. and Tranckner, J. (2020) “Integral application of chemical mass balance and watershed model to estimate point and nonpoint source pollutant loads in data-scarce little Akaki River, Ethiopia,” Sustainability, 12(17), 7084. Available at: https://doi.org/10.3390/su12177084.
  • APHA-AWWA-WEF (2017a) “4500-o oxygen (dissolved),” in W.C. Lipps, T.E. Baxter and E. Braun-Howland (eds.) Standard methods for the examination of water and wastewater. Washington DC: APHA Press. Available at: https://www.standard-methods.org/doi/10.2105/SMWW.2882.091 (Accessed: August 11, 2021).
  • APHA-AWWA-WEF (2017b) “5210 biochemical oxygen dem and (bod),” in W.C. Lipps, T.E. Baxter and E. Braun-Howland (eds.) Standard methods for the examination of water and wastewater. Washington DC: APHA Press. Available at: https://www.standardmethods.org/doi/10.2105/SMWW.2882.102 (Accessed: August 11, 2021).
  • Arifin, A. et al. (2020) “Assessment of household greywater discharge from village houses using Streeter–Phelps model in stream,” Desalination and Water Treatment, 179, pp. 8–18. Available at: https://doi.org/10.5004/dwt.2020.24995.
  • David, A.C. (2006) Water-quality engineering in natural system. Chichester, UK: John Wiley & Sons, Inc.
  • Ejigu, M.T. (2021) “Overview of water quality modeling,” Cogent Engineering, 8, 1891711. Available at: https://doi.org/10.1080/23311916.2021.1891711.
  • Ewaid, S.H. (2017) “Water quality evalution of Al-Gharraf River by two water quality indices,” Applied Water Science, 7, pp. 3759–3765. Available at: https://doi.org/10.1007/s13201-016-0523-z.
  • Ginting, B.M. et al. (2017) “Optimization of reservoir operation using linier program, case study Riam Jerawi Reservior, Indonesia,” International Journal of River Basin Management, 15(2), pp. 187–198. Available at: https://doi.org/10.1080/15715124.2017.1298604.
  • Higashino, M. and Stefan, H.G. (2017) “Oxygen upatake prediction in river and stream: A stochastic approach,” Journal of Environmental Management, 203(1), pp. 200–207. Available at: https://doi.org/10.1016/j.jenvman.2017.07.059.
  • Indonesian Geospatial Portal (2021) Peta Rupa Bumi Indonesia [Indonesian Earth Map]. Available at: https://tanahair.indonesia.go.id/portal-web/downloadpetacetak (Accessed: February 11, 2022).
  • Inyim, N. and Liengcharernsit, W. (2012) “A linear programming model for Tidal River water quality management,” Lowland Technology International, 14(2), pp. 38–49. Available at: https://cot.unhas.ac.id/journals/index.php/ialt_lti/article/view/438 (Accessed: July 11, 2022).
  • Lahlo, F.-Z., Mackey, H.R. and Al.-Ansari, T. (2023) “Towards the development of an improved mass balance and water quality index based grey water footprint model,” Environmental and Sustainability Indicators, 18, 100236. Available at: https://doi.org/10.1016/j.indic.2023.100236.
  • Li, Y. et al. (2022) “Water quality characteristics and source analysis of pollutants in the Maotiao River Basil (SW China),” Water, 14(3), 301. Available at: https://doi.org/10.3390/w14030301.
  • Long, B.T. (2020) “Inverse algorithm for Streeter–Phelps equation in water pollution control problem,” Mathematics and Computers in Simulation, 171, pp. 119–126. Available at: https://doi.org/10.1016/j.matcom.2019.12.005.
  • Lu, J. et al. (2022) “Contrast analysis of flow-discharged measurement method in a wide-shallow river during ice periods,” Water, 14 (3996). Available at: https://doi.org/10.3390/w14243996.
  • Lung, W.-S. (2023) “Progression of river BOD/DO modeling for water quality management,” Water Environment Research, 95(4), 10864. Available at: https://doi.org/10.1002/wer.10864.
  • Mahlathi, C., Siyakatshana, N. and Chirwa, E. (2016) “Water quality modelling and optimisation of wastewater treatment Network using mixed integer programming,” Water SA, 42(4), pp. 650–658. Available at: https://doi.org/10.4314/wsa.v42i4.16.
  • Mendivel-Garcia, K. et al. (2022) “Climate change impact assessment on a tropical river resilience using the Streeter-Phelps dissolved oxygen model,” Frontier in Environmental Science, 10, 903046, Available at: https://doi.org/10.3389/fenvs.2022.903046.
  • Ngatia, M., Shadrack, M.K. and Mihai, V. (2023) “Effects of anthropogenic activities on water quality within Ngong River Sub-Catchment, Nairobi, Kenya,” Water, 15, 660. Available at: https://doi.org/10.3390/w15040660.
  • Novita, E. et al. (2020) “River water quality assessment in East Java, Indonesia,” Journal of Water and Land Development, 47, pp. 135–141. Available at: https://doi.org/10.24425/jwld.2020.135040.
  • Novita, E., Firmansyah, J.W. and Pradana, H.A. (2023) “Penentuan indeks kualitas air Sungai Bedadung Kabupaten Jember menggunakan metode IP dan NSF-WQI [Determination of the Bedadung River water quality index in Jember Regency using the IP and NSF-WQI methods],” Jurnal Ilmu Lingkungan, 21(3), pp. 495–502. Available at: https://doi.org/10.14710/jil.21.3.495-502.
  • Novita, E., Pradana, H.A. and Dwija, S.P. (2020) “Water quality assessment at Bedadung River in the Jember Regency,” Journal of Natural Resources and Environmental Management, 10(4), pp. 699–714. Available at: https://doi.org/10.29244/jpsl.10.4.699-714.
  • Novita, E., Septian, A.D. and Pradana, H.A. (2022) “Analysis of organic pollution load on the oxygenation rate a Sumbersari-Kaliwates segmen of Bedadung River, Jember Regency,” Journal of Natural Resources and Environmental Management, 12(1), pp. 147–157. Available at: https://doi.org/10.29244/jpsl.12.1.147-157.
  • Nugraha, W.D., Sarminingsih, A. and Alfisya, B. (2020) “The study of self purification capacity based on biological oxygen demand (BOD) and dissolved oxygen (DO) parameters,” IOP Conference Series: Earth and Environmental Science, 448, 012105. Available at: https://doi.org/10.1088/1755-1315/448/1/012105.
  • Peraturan (2015) Peraturan Daerah (Perda) Kabupaten Jember Nomor: 1 Tahun 2015 tentang rencana tata ruang wilayah Kabupaten Jember [Local Regulation of the Jember Regency No 1/2015. Jember Regency spatial plan]. Jember: Pemerintah Daerah Kabupaten Jember. Available at: https://peraturan.bpk.go.id/Details/45976 (Accessed: June 12, 2020).
  • Peraturan (2016) Peraturan Menteri Lingkungan Hidup Dan Kehutanan Republik Indonesia Nomor: P.68/Menlhk-Setjen/2016 tentangbaku mutu air limbah domestik [Regulation of the Minister of Environment and Forestry No 68. 2016. Domestic wastewater quality standards]. Jakarta: Menteri Lingkungan Hidup Dan Kehutanan. Available at: https://ppkl.menlhk.go.id/website/file-box/5/170314114854P.68%20BAKU%20MUTU%20LIMBAH%20DOMESTIK.pdf (Accessed: June 12, 2020).
  • Peraturan (2021) Peraturan Pemerintah Nomor 22 tahun 2021 tentang penyelenggaraan perlindungan dan pengelolaan lingkungan hidup [Government Regulation Number 22 of 2021 Implementation of environmental protection and management]. Jakarta: Peraturan Pemerintah. Available at: https://peraturan.go.id/id/pp-no-22-tahun-2021 (Accessed: January 30, 2022).
  • Piniewski, M. et al. (2019) “The effect of sampling frequency and strategy on water quality modelling driven by high-frequency monitoring data in a boreal catchment,” Journal of Hydrology, 579, pp. 124–186. Available at: https://doi.org/10.1016/j.jhydrol.2019.124186.
  • Pradana, H.A. et al. (2019) “Analysis of deoxygenation and reoxygenation rate in the Indonesia River (a case study: Bedadung River East Java),” IOP Conference Series: Earth and Environmental Science, 243, 012006. Available at: https://doi.org/10.1088/1755-1315/243/1/012006.
  • Pradana, H.A., Novita, E. and Purnomo, B.H. (2022) “Simulation for water quality management using system dynamics modeling in the Bedadung Watershed, East Java, Indonesia,” Journal of Degraded and Mining Land Management, 9(2), pp. 3317–3327. Available at: https://doi.org/10.15243/jdmlm.2022.092.3317.
  • Prambudy, H., Supriyatin, T. and Setiawan, F. (2019) “The testing of chemical oxygen demand (COD) and biological oxygen demand (BOD) of river water in Cipager Cirebon,” Journal of Physics, 1360. Available at: https://doi.org/10.1088/1742-6596/1360/1/012010.
  • Rahayu, P., Rini, E.F. and Soedwiwahjono (2019) “Domestic water adequacy of Surakarta, Indonesia: Is it prone to velnerability?,” Environment and Urbanization ASIA, 10(1), pp. 81–98. Available at: https://doi.org/10.1177/0975425318821807.
  • Sidabutar, N.V. et al. (2017) “The quality of raw water for drinking water unit in Jakarta-Indonesia,” International Conference on Chemistry, Chemicals Process and Engineering (IC3PE) 2017, AIP Conference Proceedings, 1823, 020067. Available at: https://doi.org/10.1063/1.4978140.
  • Solihu, H. and Solomon, O.B. (2022) “Assessment of anthropogenic activities impacts on the water quality of Asa River: A case study of Amilengbe area, Ilorin, Kwara state, Nigeria,” Environmental Challenges, 7, 100473. Available at: https://doi.org/10.1016/j.envc.2022.100473.
  • Tadic, D. et al. (2022) “Use of passive and grab sampling and high-resolution mass spectrometry for non-targeted analysis of emerging contaminants and their semi-quantification in water,” Molecules, 27(10), 3176. Available at: https://doi.org/10.3390/molecules27103167.
  • Tugiyono, T. et al. (2023) “Evaluation of the water quality status and pollution load carrying capacity of Way Umpu River, Way Kanan District, Lampung Province, Indonesia, based on land use,” International Journal of Ecology, 2320. Available at: https://doi.org/10.1155/2023/2689879.
  • UNESCO (2015) International initiative on water quality: Promoting scientific research, knowledge sharing, effective technology and policy approaches to improve water quality for sustainable development. Paris: United Nations Educational, Scientific and Cultural Organization. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000243651 (Accessed: May 23, 2022).
  • Wang, Y. et al. (2023) “Assessment and simulation of water environment carrying capacity in a river basin using system dynamic model,” Polish Journal of Environmental Studies, 32(3), pp. 2893–2907. Available at: https://doi.org/10.15244/pjoes/161326.
  • Widyarani et al. (2022) “Domestic wastewater in Indonesia: Generation, characteristics and treatment,” Environmental Science and Pollution Research, 29, pp. 32397–32414. Available at: https://doi.org/10.1007/s11356-022-19057-6.
  • Xu, H., Goa, Q. and Yuan, B. (2022) “Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China,” Ecological Indicators, 135, 108561. Available at: https://doi.org/10.1016/j.ecolind.2022.108561.
  • Xu, J. et al. (2018) “Assessing temporal variations of ammonia nitrogen concentrations and loads in the Huaihe River Basin in relation to policies on pollution source control,” Science of The Total Environment, 642, pp. 1386–1395. Available at: https://doi.org/10.1016/j.scitotenv.2018.05.395.
  • Yeon, Y.J., Kim, D.H. and Lee, J.L. (2016) “Water quality modeling for integrated management of urban stream networks,” International Journal of Environmental Science and Development, 7(12), pp. 928–932. Available at: https://doi.org/10.18178/ijesd.2016.7.12.906.
  • Zhang, X. et al. (2013) “A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian Watershed, China,” The Scientific World Journal, 2013, 824078. Available at: https://doi.org/10.1155/2013/824078.
  • Zhang, X. et al. (2022) “Quantitative analysis of self-purification capacity of non-point source pollutants in watersheds based on SWAT model,” Ecological Indicators, 143, 109425, Available at: https://doi.org/10.1016/j.ecolind.2022.109425.
  • Zubaidah, T., Nieke, K. and Agus, S. (2019) “The self-purification ability in the River of Banjarmasin, Indonesia,” Journal of Ecological Engineering, 20(2), pp. 177–182. Available at: https://doi.org/10.12911/22998993/97286.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adefd3cf-cafa-4668-82e5-dcebbda58ca2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.