Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is concerned with positive solutions of the semilinear polyharmonic equation [formula] on Rn, where m and n are positive integers with n > 2m, α ∈ e (—1,1). The coefncient a is assumed to satisfy[formula], where Λ ∈ (2m,∞) and [formula]is positive with [formula], one also assumes that [formula]. We prove the existence of a positive solution u such that [formula], with [formula] and a function L, given explicitly in terms of L and satisfying the same condition as infinity. (Given positive functions ∫ and g on Rn, ∫≈ g means that [formula]for some constant c > 1.)
Czasopismo
Rocznik
Tom
Strony
5--19
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Campus Universitaire Faculte des Sciences de Tunis Departement de Mathematiques 2092 Tunis, Tunisi
Bibliografia
- [1] S. Ben Othman, H. Maagli, S. Masmoudi, M. Zribi, Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlinear Anal. 71 (2009), 4137-4150.
- [2] H. Brezis, S. Kamin, Sublinear elliptic equations in Rn, Manuscripta Math. 74 (1992), 87-106.
- [3] A.C. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Lapladan, Opuscula Math. 33 (2013) 3, 439-453.
- [4] R. Chemmam, A. Dhifli, H. Maagli, Asymptotic bhavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems, Electron. J. Differential Equations 2011 (2011) 88, 1-12.
- [5] R. Chemmam, H. Maagli, S. Masmoudi, M. Zribi, Combined effects in nonlinear singular elliptic problems in a bounded domain, Adv. Nonlinear Anal. 1 (2012) 4, 391-404.
- [6] M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
- [7] A. Dhifli, Z. Zine El Abidine, Asymptotic behavior of positive solutions of a semilinear polyharmonic problem in the unit ball, Nonlinear Anal. 75 (2012), 625-636.
- [8] A.L. Edelson, Entire solutions of singular elliptic equations, J. Math. Anal. 139 (1989), 523-532.
- [9] A. Ghanmi, H. Maagli, V. Radulescu, N. Zeddini, Large and bounded solutions for a class of nonlinear Schrodinger stationary systems, Anal. Appl. (Singap.) 7 (2009) 4, 391-404.
- [10] M. Ghergu, V.D. Radulescu, Bifurcation and asymptotics for the Lane-Emden-Fowler equation, C.R. Acad. Sci. Paris. Ser. I 337 (2003), 259-264.
- [11] M. Ghergu, V.D. Radulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), 520-536.
- [12] M. Ghergu, V.D. Radulescu, Ground state solutions for the singular Lane-Emden--Fowler equation with sublinear convection term, J. Math. Anal. Appl. 333 (2007), 265-273
- [13] S. Gontara, H. Maagli, S. Masmoudi, S. Turki, Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet, J. Math. Anal. Appl. 369 (2010), 719-729.
- [14] A.V. Lair, A.W. Shaker, Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl. 211 (1997), 371-385.
- [15] A.C. Lazer, P. J. Mckenna, On a singular nonlinear elliptic bondary-value problem, Proc. Amer. Math. Soc 111 (1991), 721-730.
- [16] H. Maagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), 2941-2947.
- [17] H. Maagli, M. Zribi, Existence of positive solutions for some polyharmonic nonlinear-equations in Rn, Abstr. Appl. Anal. 2006 (2005), 1-24.
- [18] C.A. Santos, On ground state solutions for singular and semilinear problems including super linear terms at infinity, Nonlinear Anal. 71 (2009), 6038-6043.
- [19] R. Seneta, Regular Varying Functions, Lecture Notes in Math., vol. 508, Springer--Verlag, Berlin, 1976.
- [20] S. Turki, Existence and asymptotic behavior of positive continuous solutions for a nonlinear elliptic system in the half space, Opuscula Math. 32 (2012) 4, 783-795
- [21] Z. Zhang, The asymptotic behaviour of the unique solution for the singular Lane--Emdem-Fowler equation, J. Math. Anal. Appl. 312 (2005), 33-43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ade87795-f803-4502-9db5-ae58e2a51bed