Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A numerical model of propagation of internal gravity waves in a stratified medium is applied to the problem of tsunami wave run-up onto a shore. In the model, the ocean and the atmosphere are considered as a united continuum in which the density varies with height with a saltus at the water-air interface. The problem solution is sought as a generalized (weak) solution; such a mathematical approach automatically ensures correct conditions of matching of the solutions used on a water-air interlayer. The density stratification in the ocean and in the atmosphere is supposed to be described with an exponential function, but in the ocean a scale of the density stratification takes a large value and the density changes slightly. The initial wave running to a shore is taken in the form of a long solitary wave. The wave evolution is simulated with consideration of the time-varying vertical wave structure. Near the shore, the wave breaks down, and intensive turbulent mixing develops in the water thickness. The wave breakdown effect depends on the bottom shape. In the case when the bottom slope is small and the inshore depth grows slowly with the distance from the shore, mixing happens only in the upper stratum of the fluid due to the formation of a quiet region near the bottom. When the bottom slope takes a sufficiently large value, the depth where fluid mixing takes place goes down up to 50 meters. The developed model shows that the depth of the mixing effects strongly depends on the bottom shape, and the model may be useful for investigation of the impact strong gales and hurricanes on the coastline and beaches.
Wydawca
Rocznik
Tom
Strony
157--169
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Immanuel Kant Baltic Federal University A. Nevskogo 14, 236041 Kaliningrad, Russia
- A. M. Obuhov Institute of Atmospheric Physics Moscow, Russia
autor
- Immanuel Kant Baltic Federal University A. Nevskogo 14, 236041 Kaliningrad, Russia
Bibliografia
- [1] Pelinovsky E N 1996 Hydrodynamics of tsunami waves, IPF of Russian Academy of Sciences 274
- [2] Pelinovsky E N 1982 Non-linear dynamics of tsunami waves, IPF of AS USSR 226
- [3] Levin B V, Nosov M A 2005 Physics of a tsunami and related phenomena in the ocean, Yanus-K 360
- [4] Massel S R, Pelinovsky E N 2001 Oceanologia 43 (1) 61
- [5] Carrier G F, Greenspan H P 1958 J. Fluid Mech. 4 97
- [6] Kaˆanog˘glu U 2004 J. Fluid Mech. 513 363
- [7] Fedotova Z I, Chubarov L V 2001, Transactions of International conference RDAMM- 2001, part 2 6 380
- [8] Beizel S A, Chubarov L B, Khakimzyanov G S 2011 Russian Journal of Numerical Analysis and Mathematical Modelling 26 (1) 17
- [9] Zajtsev A I, Kostenko I S, Chernov A G 2010, Transactions of R. E. Alekseev Nizhniy Novgorod State Engineering University 3 34
- [10] Kurkin A A 2004 A. M. Prokhorov Izvestiya AIN, Applied mathematics and mechanics 9 88
- [11] Zaitsev A I 2005 Reports of the Russian Academy of Sciences 402 (3) 388
- [12] Earthquake Hazards Program http://earthquake.usgs.gov/learn/topics/topics.php? topicID=34 access: June 26, 2016
- [13] Nami-Dance-Software http://www.swmath.org/software/12053 access: June 26, 2016
- [14] The Tsunami Center http://sakhmeteo.ru/company/structure/tsunamicenter access: June 26, 2016
- [15] Imamura F, Yalciner A C, Ozyurt G 2006 58
- [16] Titov V V, Gonszalez F I, Mofjeld H O, Venturato A J 2003, NOAA Technical Memorandum OAR PMEL-124 21
- [17] Shi F, Kirby J T, Harris J C, Geiman J D, Grili S T 2012 Ocean Modelling 43–44 36
- [18] Didenkulova I I, Talipova T G, Pelinovskij E N et al. 2012 Modern Science. Collection of research papers 3 (5) 1
- [19] Chen S, Johnson D B, Raad P E et al. 1997 International Journal for Numerical Methods in Fluids 25 (7) 749
- [20] Shi F, Ma G, Kirby J T et al. 2012 Coastal Engineering 33 1
- [21] Abbasov I B 2012 A computing mechanics of continuum 5 (3) 322
- [22] Dambieva D B, Hakimzjanov G S 2008 Computing technologies 13 (1) 48
- [23] Afanasev K E, Berezin E N 2004 Computing technologies 9 (3) 22
- [24] Shokin J I, Ruziev R A, Hakimzjanov G S 1990 Numerical modelling of flat potential currents of fluid with surface waves, VC SO AN SSSR 12 (preprint)
- [25] Kshevetskii S P 2006 Computational Mathematics and Mathematical Physics 46 (11) 1988
- [26] Gavrilov N M, Kshevetskii S P 2005 Journal of Atmospheric and Solar-Terrestrial Physics 67 1014
- [27] Kshevetskii S P, Gavrilov N M 2003 Geomagnetism and aeronomy 43 (1) 69
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ade576c2-937e-4d7c-a266-d15def3e0384