Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
There is a need to develop advanced multifunctional scaffolds for the treatment of bone tissue lesions, which apart from providing support for infiltrating cells could assure the delivery of drugs or biologically active molecules enhancing bone formation. We developed composite scaffolds for bone tissue engineering based on gellan gum (GG) and gelatin (Gel) hydrogel enriched with epigallocatechin gallate (EGCG) loaded CaCO3 microparticles and subjected to enzymatic mineralization with calcium phosphate (CaP). The method of manufacturing CaCO3 microparticles was optimized. The EGCG-loaded microparticles were smaller than those unloaded, and the release of EGCG was prolonged for up to 14 days, as shown by the Folin-Ciocalteu test. The particles reduced the viability of the MG-63 cells as compared to the control. However, when they were loaded with EGCG, their cytotoxicity was reduced. The particles were suspended in a GG/Gel hydrogel containing alkaline phosphatase (ALP), soaked in calcium glycerophosphate (CaGP) solution to create CaP deposits, and submitted to freeze-drying, in order to produce a porous scaffold. The microstructure of the scaffolds was characterized by optical and scanning electron microscopy and showed that the size of the pores corresponds to that of the spongy bone. In vitro tests with MG-63 cells confirmed that mineralized scaffolds support cell adhesion and growth to a higher extent than nonmineralized ones.
Czasopismo
Rocznik
Tom
Strony
12--21
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
- Silesian Park of Medical Technology Kardio-Med Silesia, ul. Marii Skłodowskiej-Curie 10C, 41-800 Zabrze, Poland
autor
- University Politechnica of Bucharest, Faculty of Medical Engineering, Splaiul Independentei 313, 060042 Bucharest, Romania
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Florencio-Silva R., Sasso G.R. da S., Sasso-Cerri E., Simões M.J., Cerri P.S.: Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res Int 2015 (2015) 1–17. https://doi.org/10.1155/2015/421746.
- [2] Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., et al.: Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C 78 (2017) 1246–1262. https://doi.org/10.1016/ j.msec.2017.05.017.
- [3] Jiang S., Wang M., He J.: A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 6 (2021) https://doi.org/10.1002/btm2.10206.
- [4] Douglas T.E.L., Messersmith P.B., Chasan S., Mikos A.G., de Mulder E.L.W., Dickson G., et al.: Enzymatic Mineralization of Hydrogels for Bone Tissue Engineering by Incorporation of Alkaline Phosphatase. Macromol Biosci 12 (2012) 1077–1089. https://doi.org/10.1002/mabi.201100501.
- [5] Pietryga K., Reczyńska-Kolman K., Reseland J.E., Haugen H., Larreta-Garde V., Pamuła E.: Biphasic monolithic osteochondral scaffolds obtained by diffusion-limited enzymatic mineralization of gellan gum hydrogel. Biocybern Biomed Eng 43 (2023) 189–205. https://doi.org/10.1016/ j.bbe.2022.12.009.
- [6] Dorati R., DeTrizio A., Modena T., Conti B., Benazzo F., Gastaldi G., et al.: Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals 10:96 (2017) https://doi.org/10.3390/ph10040096.
- [7] Villarreal-Otalvaro C., Coburn J.M.: Fabrication Methods and Form Factors of Gellan Gum-Based Materials for Drug Delivery and Anti-Cancer Applications. ACS Biomater Sci Eng 2021:acsbiomaterials.1c00685. https://doi.org/10.1021/ acsbiomaterials.1c00685.
- [8] Douglas T.E.L., Pilarz M., Lopez-Heredia M., Brackman G., Schaubroeck D., Balcaen L., et al.: Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity: Antibacterial hydrogels mineralized with Ca-Zn phosphate. J Tissue Eng Regen Med 11 (2017) 1610–1618. https://doi.org/10.1002/term.2062.
- [9] Fadia P., Tyagi S., Bhagat S., Nair A., Panchal P., Dave H., et al.: Calcium carbonate nano- and microparticles: synthesis methods and biological applications. 3 Biotech 11:457 (2021) https://doi.org/10.1007/s13205-021-02995-2.
- [10] Sovova S., Abalymov A., Pekar M., Skirtach A.G., Parakhonskiy B.: Calcium carbonate particles: synthesis, temperature and time influence on the size, shape, phase, and their impact on cell hydroxyapatite formation. J Mater Chem B 9 (2021) 8308–8320. https://doi.org/10.1039/ D1TB01072G.
- [11] Honda Y., Takeda Y., Li P., Huang A., Sasayama S., Hara E., et al.: Epigallocatechin Gallate-Modified Gelatin Sponges Treated by Vacuum Heating as a Novel Scaffold for Bone Tissue Engineering. Molecules 23:876 (2018) https://doi.org/10.3390/molecules23040876.
- [12] Song L., Xie X., Lv C., Khan A. ur R., Sun Y., Li R., et al.: Electrospun biodegradable nanofibers loaded with epigallocatechin gallate for guided bone regeneration. Compos Part B Eng 238 (2022) 109920. https://doi.org/10.1016/ j.compositesb.2022.109920.
- [13] Pietryga K., Costa J., Pereira P., Douglas T.E.L.: Promotion of bone cells growth on gellan gum hydrogels by enzymatic mineralization. Eng Biomat 125 (2014) 6–12.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-addbb728-8ab8-4174-8164-9fe55964f20e