PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie metody predykcyjnej o ograniczonej liczbie stanów do sterowania 4-gałęziowym równoległym filtrem aktywnym

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Application of finite-state model predictive control to 4-leg shunt active power filter
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono nową metodę implementacji sterowania predykcyjnego 3-poziomowym 4-gałęziowym przekształtnikiem z kondensatorami o zmiennym potencjale, pracującym jako równoległy filtr aktywny. W proponowanej metodzie sterowania wykorzystywany jest model o ograniczonej liczbie stanów. Na zakończenie zamieszczono wyniki badań eksperymentalnych, potwierdzających poprawność działania sterowania.
EN
Paper presents the new implementation of predictive control to 3-level 4-leg Flying Capacitor Converter operating as Shunt Active Power Filter. Proposed method employs a finite-state model. At the end experimental results, which validate a correct operation of the proposed method are presented.
Rocznik
Strony
125--131
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Politechnika Warszawska, Instytut Techniki Cieplnej, ul. Nowowiejska 21/25, 00-665 Warszawa
autor
  • Politechnika Warszawska, Instytut Sterowania i Elektroniki Przemysłowej, ul. Koszykowa 75, 00-662 Warszawa
Bibliografia
  • [1] Akagi H., Watanabe E.H., Aredes M., Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press- Wiley, (2007)
  • [2] Meynard T.A., Foch H., “Multi-level conversion: high voltage choppers and voltage-source inverters,” PESC `92 Rec. 23rd Annu. IEEE Power Electron. Spec. Conf., IEEE, (1992), 397– 403
  • [3] Meynard T.A., Foch H., Forest F., Turpin C., Richardeau F., Delmas L., Gateau G., Lefeuvre E., “Multicell converters: derived topologies,” IEEE Trans. Ind. Electron., 49 (2002), nr 5, 978–987
  • [4] Rodriguez J., Franquelo L.G., Kouro S., Leon J.I., Portillo R.C., Prats M.A.M., Perez M.A., “Multilevel Converters: An Enabling Technology for High-Power Applications,” Proc. IEEE, 97 (2009), nr 11, 1786–1817
  • [5] Ali S.M., Kazmierkowski M.P., “Current regulation of four-leg PWM/VSI,” IECON ’98. Proc. 24th Annu. Conf. IEEE Ind. Electron. Soc. (Cat. No.98CH36200), IEEE, 3 (1998), 1853– 1858
  • [6] Dzieniakowski M., Kaźmierkowski M., “Microprocessor-based novel current regulator for VSI-PWM inverters,” 23rd Annu. IEEE Power Electron. Spec. Conf. 1992. PESC ’92 Rec., (1992), 459–464 vol. 1
  • [7] Kouro S., Malinowski M., Gopakumar K., Pou J., Franquelo L.G., Wu B., Rodriguez J., Perez M.A., Leon J.I., “Recent Advances and Industrial Applications of Multilevel Converters,” IEEE Trans. Ind. Electron., 57 (2010), nr 8, 2553–2580
  • [8] Bhattacharya S., Frank T.M., Divan D.M., Banerjee B., “Active filter system implementation,” IEEE Ind. Appl. Mag., 4 (1998), nr 5, 47–63
  • [9] Zhang X., Wang Y., Yu C., Guo L., Cao R., “Hysteresis Model Predictive Control for High-Power Grid-Connected Inverters With Output LCL Filter,” IEEE Trans. Ind. Electron., 63 (2016), nr 1, 246–256
  • [10] Aguilera R.P., Quevedo D.E., “Predictive Control of Power Converters: Designs With Guaranteed Performance,” IEEE Trans. Ind. Informatics, 11 (2015), nr 1, 53–63
  • [11] Acuna P., Moran L., Rivera M., Aguilera R., Burgos R., Agelidis V.G., “A Single-Objective Predictive Control Method for a Multi- VariableSingle-Phase Three-Level NPC Converter-Based Active Power Filter,” IEEE Trans. Ind. Electron., 62 (2015), nr 7, 1–1
  • [12] Subudhi B., Panda P.C., Panigrahi R., “Model predictive-based shunt active power filter with a new reference current estimation strategy,” IET Power Electron., 8 (2015), nr 2, 221– 233
  • [13] Sikorski A., Grodzki R., “Predictive control of the AC/DC converter,” 2014 16th Int. Power Electron. Motion Control Conf. Expo., IEEE, (2014), 131–136
  • [14] Vazquez S., Leon J.I., Franquelo L.G., Rodriguez J., Young H.A., Marquez A., Zanchetta P., “Model Predictive Control: A Review of Its Applications in Power Electronics,” IEEE Ind. Electron. Mag., 8 (2014), nr 1, 16–31
  • [15] Vatani M., Hovd M., Molinas M., “Finite Control Set Model Predictive Control of a shunt active power filter,” 2013 Twenty- Eighth Annu. IEEE Appl. Power Electron. Conf. Expo., IEEE, (2013), 2156–2161
  • [16] Rodriguez J., Kazmierkowski M.P., Espinoza J.R., Zanchetta P., Abu-Rub H., Young H.A., Rojas C.A., “State of the Art of Finite Control Set Model Predictive Control in Power Electronics,” IEEE Trans. Ind. Informatics, 9 (2013), nr 2, 1003–1016
  • [17] Scoltock J., Geyer T., Madawala U., “Model Predictive Direct Current Control for a grid-connected converter: LCL-filter versus L-filter,” 2013 IEEE Int. Conf. Ind. Technol., IEEE, (2013), 576–581
  • [18] Acuna P., Moran L., Rivera M., Dixon J., Burgos R., “An active power filter using single-phase NPC converters and predictive control for medium voltage distribution systems,” IECON 2013 - 39th Annu. Conf. IEEE Ind. Electron. Soc., IEEE, (2013), 8516– 8521
  • [19] Defay F., Llor A.M., Fadel M., “Predictive control of flying capacitor active power filter,” 2010 IEEE Int. Conf. Ind. Technol., (2010), 1820–1825
  • [20] Panten N., Hoffmann N., Fuchs F., “Finite Control Set Model Predictive Current Control for Grid-Connected Voltage-Source Converters with LCL-Filters: A study based on different State Feedbacks,” IEEE Trans. Power Electron., 31 (2015), nr 7, 5189–5200
  • [21] Wang F., Li S., Mei X., Xie W., Rodriguez J., Kennel R.M., “Model-Based Predictive Direct Control Strategies for Electrical Drives: An Experimental Evaluation of PTC and PCC Methods,” IEEE Trans. Ind. Informatics, 11 (2015), nr 3, 671–681
  • [22] Orlowska-Kowalska T., Blaabjerg F., Rodriguez J., Advanced and Intelligent Control in Power Electronics and Drives, Springer, 531 (2014)
  • [23] Acuna P., Moran L., Rivera M., Dixon J., Rodriguez J., “Improved Active Power Filter Performance for Renewable Power Generation Systems,” IEEE Trans. Power Electron., IEEE, 29 (2014), nr 2, 687–694
  • [24] Ziani A.C., Llor A.M., Fadel M., “Model predictive current controller for four-leg converters under unbalanced conditions,” Proc. 2011 14th Eur. Conf. Power Electron. Appl., (2011), 1–10
  • [25] Antoniewicz K., Malinowski M., “Comparison of Current Control Strategies for Four-Leg Shunt Active Power Filter in Matlab- Simulink,” Prz. Elektrotechniczny, R. 90, nr (2014), 214–220
  • [26] Stolze P., Kramkowski M., Mouton T., Tomlinson M., Kennel R., “Increasing the performance of Finite-Set Model Predictive Control by oversampling,” 2013 IEEE Int. Conf. Ind. Technol., (2013), 551–556
  • [27] Rivera M., Yaramasu V., Llor A., Rodriguez J., Wu B., Fadel M., “Digital Predictive Current Control of a Three-Phase Four- Leg Inverter,” IEEE Trans. Ind. Electron., 60 (2013), nr 11, 4903–4912
  • [28] Rodriguez J., Cortes P., Predictive Control of Power Converters and Electrical Drives, Wiley-IEEE Press, (2012)
  • [29] Zanchetta P., Cortes P., Perez M., Rodriguez J., Silva C., “Finite States Model Predictive Control for Shunt Active Filters,” IECON 2011 - 37th Annu. Conf. IEEE Ind. Electron. Soc., (2011), 581–586
  • [30] Defay F., Llor A.-M., Fadel M., “A Predictive Control With Flying Capacitor Balancing of a Multicell Active Power Filter,” IEEE Trans. Ind. Electron., IEEE, 55 (2008), nr 9, 3212–3220
  • [31] Antoniewicz K., Jasinski M., Kazmierkowski M.P., Malinowski M., “Experimental research on model predictive control of 3- level 4-leg Flying Capacitor Converter operating as Shunt Active Power Filter,” IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., IEEE, (2015), 000036–000041
  • [32] Antoniewicz K., Jasinski M., Kazmierkowski M.P., “Model predictive control of three-level four-leg flying capacitor converter operating as Shunt Active Power Filter,” 2015 IEEE Int. Conf. Ind. Technol., IEEE, (2015), 2288–2294
  • [33] Antoniewicz K., “Comparison of Current Control Strategies for Three-level Four-leg Shunt Active Power Filter,” Closing Conf. Proj. “Doctoral Sch. Energy Geotechnol. II,” Parnawa: Doctoral School of Energy and Geotechnology II, (2015), 99–101
  • [34] Aredes M., Hafner J., Heumann K., “Three-phase four-wire shunt active filter control strategies,” IEEE Trans. Power Electron., 12 (1997), nr 2, 311–318
  • [35] Choi D.-K., Lee K.-B., “Dynamic Performance Improvement of AC/DC Converter Using Model Predictive Direct Power Control With Finite Control Set,” IEEE Trans. Ind. Electron., 62 (2015), nr 2, 757–767
  • [36] Xia C., Liu T., Shi T., Song Z., “A Simplified Finite-Control-Set Model-Predictive Control for Power Converters,” IEEE Trans. Ind. Informatics, 10 (2014), nr 2, 991–1002
  • [37] Geyer T., Quevedo D.E., “Performance of Multistep Finite Control Set Model Predictive Control for Power Electronics,” IEEE Trans. Power Electron., 30 (2015), nr 3, 1633–1644
  • [38] Vatani M., Bahrani B., Saeedifard M., Hovd M., “Indirect Finite Control Set Model Predictive Control of Modular Multilevel Converters,” IEEE Trans. Smart Grid, 6 (2015), nr 3, 1520– 1529
  • [39] Rodriguez J., Pontt J., Silva C.A., Correa P., Lezana P., Cortes P., Ammann U., Jos R., Jorge P., Csar a S., Pablo C., Pablo L., Patricio C., Ulrich A., “Predictive Current Control of a Voltage Source Inverter,” IEEE Trans. Ind. Electron., 54 (2007), nr 1, 495–503
  • [40] Antoniewicz K., Jasinski M., Kazmierkowski M., Malinowski M., “Model Predictive Control for 3-Level 4-Leg Flying Capacitor Converter Operating as Shunt Active Power Filter,” IEEE Trans. Ind. Electron., 63 (2016), nr 8, 5255–5262
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-add90477-a7a1-45ed-b3f0-ba06edf2f341
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.