PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Humped Relationship between Herbaceous Species Richness and Biomass Reveals a Potential for Increasing Productivity in a Temperate Desert in Central Asia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Species richness-biomass relationship has become a primary focus in plant community ecology. The most commonly reported pattern of species richness and biomass is the humped relationship with a peak in richness at moderate biomass, although negative, positive, or no relationships exited in some cases. However, the richness-biomass relationship in the temperate deserts of Central Asia, where herbaceous species with different life forms are abundant, remains unclear. In this study, 21-214 plots with herbaceous richness and aboveground biomass for each of four plot sizes (0.25, 25, 100, and 400 m2) were surveyed in early summer and early autumn in the Gurbantunggut Desert, China. Linear and quadratic regressions were employed to examine the richness-biomass relationship and the location of the richness peak. Significantly unimodal species richness-biomass relationships were observed in all plot sizes and seasons (except for 0.25 m2 plot in summer). In most cases (9/11), the biomass at the richness peak was higher than half of the biomass range. Meanwhile, the percent of sampling plots where the biomass was less than the peak was considerably greater than 50% (72.7 to 100%) in all cases, and nine of them were more than 95%, indicating strong interspecific coexistence and weak interspecific competition. In conclusion, under the background of increasing precipitation and nitrogen deposition, the humped richness-biomass relationship and the high percent of sampling plots with low biomass jointly revealed a huge potential for increasing productivity, which is crucial for the carbon fixation and ecosystem stability in deserts of Central Asia.
Rocznik
Strony
67--83
Opis fizyczny
Bibliogr. 79 poz., rys., tab., wykr.
Twórcy
autor
  • CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, South Beijing Road 818, Urumqi, Xinjiang 830011, China
  • CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, South Beijing Road 818, Urumqi, Xinjiang 830011, China
autor
  • CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, South Beijing Road 818, Urumqi, Xinjiang 830011, China
autor
  • CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, South Beijing Road 818, Urumqi, Xinjiang 830011, China
autor
  • CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, South Beijing Road 818, Urumqi, Xinjiang 830011, China
  • CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, South Beijing Road 818, Urumqi, Xinjiang 830011, China
Bibliografia
  • 1. Adler P. B., Seabloom E., Borer E. et al. 2011 – Productivity is a poor predictor of plant species richness – Science, 333 (6050): 1750-1753.
  • 2. Alhamad M. N., Oswald B. P., Bataineh M. M., Alrababah M. A., Gharaibeh M. M. 2010 – Relationships between herbaceous diversity and biomass in two habitats in arid Mediterranean rangeland – J. Arid Environ. 74: 277-283.
  • 3. Ammer C. 2018 – Diversity and forest productivity in a changing climate – New Phytol. 221: 50-66.
  • 4. Bai Y. F., Wu J. G., Pan Q. M., Huang J. H., Wang Q. B. et al. 2007 – Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe – J. Appl. Ecol. 44: 1023-1034.
  • 5. Bhattarai K. R., Vetaas O. R., Grytnes J. A. 2004 – Relationship between plant species richness and biomass in an arid sub-alpine grassland of the central Himalayas, Nepal – Folia Geobot. 39: 57-71.
  • 6. Bischoff A., Auge H., Mahn E. G. 2005 – Seasonal changes in the relationship between plant species richness and community biomass in early succession – Basic Appl. Ecol. 6: 385-394.
  • 7. Casado M. A., Castro I., Ramírez-Sanz L., Costa-Tenorio M., de Miguel J. M., Pineda F. D. 2004 – Herbaceous plant richness and vegetation cover in Mediterranean grasslands and shrublands – Plant Ecol. 170: 83-91.
  • 8. Chalcraft D. R., Williams J. W., Smith M. D., Willig M. R. 2004 – Scale dependence in the species-richness-productivity relationship: The role of species turnover – Ecology, 85: 2701-2708.
  • 9. Chase J. M., Leibold M. A. 2002 – Spatial scale dictates the productivity-biodiversity relationship – Nature, 416: 427-430.
  • 10. Chave J. 2013 – The problem of pattern and scale in ecology: What have we learned in 20 years? – Ecol. Lett. 16: 4-16.
  • 11. Cornwell W. K., Grubb P. J. 2003 – Regional and local patterns in plant species richness with respect to resource availability – Oikos – 100: 417-428.
  • 12. CRFX (Commissione Redactorum Florae Xinjiangensis) 1993-2011 – [Flora Xinjiangensis] – Urumqi: Xinjiang Science, Technology and Health Press (K) (in Chinese).
  • 13. Dodson S. I., Arnott S. E., Cottingham K. L. 2000 – The relationship in lake communities between primary productivity and species richness – Ecology, 81: 2662-2679.
  • 14. Espinar J. L. 2006 – Sample size and the detection of a hump-shaped relationship between biomass and species richness in Mediterranean wetlands – J. Veg. Sci. 17: 227-232.
  • 15. Forrester D. I., Bauhus J. 2016 – A review of processes behind diversity-productivity relationships in forests – Curr. For. Rep. 2: 45-61.
  • 16. Fraser L. H., Jentsch A., Sternberg M. 2014 – What drives plant species diversity? A global distributed test of the unimodal relationship between herbaceous species richness and plant biomass – J. Veg. Sci. 25: 1160-1166.
  • 17. Gilliam F. S., Dick D. A. 2010 – Spatial heterogeneity of soil nutrients and plant species in herb-dominated communities of contrasting land use – Plant Ecol. 209: 83-94.
  • 18. Grace J. B. 1999 – The factors controlling species density in herbaceous plant communities: an assessment – Perspect. Plant Ecol. 2: 1-28.
  • 19. Graham J. H., Duda J. J. 2011 – The humpbacked species richness-curve: a contingent rule for community ecology – Int. J. Ecol. 11: 1-16.
  • 20. Grytnes J. A. 2000 – Fine-scale vascular plant species richness in different alpine vegetation types: Relationships with biomass and cover – J. Veg. Sci. 11: 87-92.
  • 21. Guo Q. 2003 – Temporal species richness-biomass relationships along successional gradients – J. Veg. Sci. 14: 121-128.
  • 22. Guo Q., Berry W. L. 1998 – Species richness and biomass: dissection of the hump-shaped relationships – Ecology, 79: 2555-2559.
  • 23. Hasimu D., Eminniyaz A., Abudoukerimu P. 2016 – [Anatomical structure of 12 desert ephemeral species leaves and their adaptability on desert environment] – Acta Bot. Boreali-Occident. Sin. 36: 2448-2453 (in Chinese, English summary).
  • 24. Hu Z., Zhou Q., Chen X., Qian C., Wang S., Li J. 2017 – Variations and changes of annual precipitation in Central Asia over the last century – Int. J. Climat. 37: 157-170.
  • 25. Huang A., Zhou Y., Zhang Y., Huang D., Zhao Y., Wu H. 2014 – Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5 – J. Climate, 27: 6627-6646.
  • 26. Jackson J. 2005 – Is there a relationship between herbaceous species richness and buffel grass (Cenchrus ciliaris)? – Austral Ecol. 30: 505-517.
  • 27. Jacob M., Leuschner C., Thomas F. M. 2010 – Productivity of temperate broad-leaved forest stands differing in tree species diversity – Ann. For. Sci. 67: 503.
  • 28. Kelemen A., Török P., Valkó O., Miglécz T., Tóthmérész B. 2013 – Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands – J. Veget. Sci. 24:1195-1203.
  • 29. Kutiel P., Danin A. 1987 – Annual species diversity and aboveground phytomass in relation to some soil properties in the sand dunes of the northern Sharon Plains, Israel – Vegetatio, 70: 45-49.
  • 30. Lasky J. R., Uriarte M., Boukili V. K., Erickson D. L., Kress W. J., Chazdon R. L. 2014 – The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession – Ecol. Lett. 17: 1158-1167.
  • 31. Laughlin D. C., Bakker J. D., Daniels M. L., Moore M. M., Casey C. A., Springer J. D. 2008 – Restoring plant species diversity and community composition in a ponderosa pine-bunchgrass ecosystem – Plant Ecol. 197: 139-151.
  • 32. Li K. H., Hu Y. K., Adeli M., Yu J. M., Gao G. G. 2007 – [Species diversity and aboveground biomass of alpine grassland on the southern slope of Tianshan Mountain] – J. Arid Land Resour. Environ. 21: 155-159 (in Chinese, English summary).
  • 33. Li K., Fangmeier A., Hu Y., Lu C., Liu X. 2012 – Positive grass diversity-productivity relationships and controlling factors along an elevation gradient – Pol. J. Ecol. 60: 123-131.
  • 34. Li S., Su J., Lang X., Liu W., Ou G. 2018 – Positive relationship between species richness and aboveground biomass across forest strata in a primary Pinus kesiya forest – Sci. Rep. 8 (1): 2227.
  • 35. Liu R., Cieraad E., Li Y., Ma J. 2016 – Precipitation pattern determines the inter-annual variation of herbaceous layer and carbon fluxes in a phreatophyte-dominated desert ecosystem – Ecosystems, 19: 601-614.
  • 36. Liu H., Tao Y, Qiu D., Zhang D., Zhang Y. 2013a – Effects of artificial sand fixing on community characteristics of a rare desert shrub – Conserv. Biol. 27: 1011-1019.
  • 37. Liu X., Zhang Y., Han W., Shen J., Cui Z. et al. 2013b – Enhanced nitrogen deposition over China – Nature, 494 (7438): 459-462.
  • 38. Lv P., Zuo X. A., Yue X. Y., Zhang J., Zhao S. L., Cheng Q. P. 2018 – Temporal changes of vegetation characteristics during the long-term grazing exclusion in Horqin Sandy Land – Chinese J. Ecol. 37: 2880-2888.
  • 39. Ma W., Fang J. 2006 – The relationship between species richness and productivity in four typical grasslands of northern China – Biodiv. Sci. 14: 21-28.
  • 40. Marañón T., García L. V. 1997 – The relationship between diversity and productivity in plant communities: facts and artifacts – J. Appl. Ecol. 85: 1995-1996.
  • 41. Mathur M., Sundaramoorthy S. 2016 – Patterns of herbaceous species richness and productivity along gradients of soil moisture and nutrients in the Indian Thar Desert – J. Arid Environ. 125: 80-87.
  • 42. Mensah S., du Toit B., Seifert T. 2018 – Diversity-biomass relationship across forest layers: Implications for niche complementarity and selection effects – Oecologia, 187: 783-795.
  • 43. Michalet R., Brooker R. W., Cavieres L. A., Kikvidze Z., Lortie C. J. et al. 2006 – Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? – Ecol. Lett. 9: 767-773.
  • 44. Mittelbach G. G., Steiner C. F., Scheiner S. M., Gross K. L., Reynolds H. L. et al. 2001 – What is the observed relationship between species richness and productivity? – Ecology, 82: 2381-2396.
  • 45. Mittelbach G. G. 2010 – Understanding species richness-productivity relationships: the importance of meta-analyses – Ecology, 91: 2540-2544.
  • 46. Moore D. R. J., Keddy P. A. 1989 – The relationship between species richness and standing crop in wetlands: the importance of scale – Vegetatio, 79: 99-106.
  • 47. Oba G., Vetaas O. R., Stenseth N. C. 2001 – Relationships between biomass and plant species richness in arid-zone grazing lands – J. Appl. Ecol. 38: 836-845.
  • 48. Oksanen J. 1996 – Is the humped relationship between species richness and biomass an artefact due to plot size? – J. Ecol. 84: 293-295.
  • 49. Olde Venterink H., Wassen M. J., Verkroost A. W. M., de Ruiter P. C. 2003 – Species richness-productivity patterns differ between N-, P-, and K-limited wetlands – Ecology, 84: 2191-2199.
  • 50. Palmer M. W., Hussain M. 1997 – The unimodal (species richness-biomass) relationship in microcommunities emerging from soil seed banks – Proc. Ok. Acad. Sci. 77: 17-26.
  • 51. Peters D. P. C., Bestelmeyer B. T., Turner M. G. 2007 – Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics – Ecosystems, 10: 790-796.
  • 52. Rosenzweig M. L., Abramsky Z. 1993 – How are diversity and productivity related? (InSpecies Diversity in Ecological Communities: Historical and Geographical Perspectives, Eds: R. E. Ricklefs, D. Schluter) – University of Chicago Press, Chicago, pp. 52-65.
  • 53. Sanaei A., Granzow-de la Cerda Í., Cayuela L. 2018 – Grain size affects the relationship between species richness and aboveground biomass in semi-arid rangelands – Plant Ecol. Divers. 11: 489-499.
  • 54. Scheiner S. M., Cox S. B., Willig M., Mittelbach G. G., Osenberg C., Kaspari M. 2000 – Species richness, species-area curves and Simpson's paradox – Evol. Ecol. Res. 2: 791-802.
  • 55. Song S., Bai J. 2016 – Increasing winter precipitation over arid central Asia under global warming – Atmosphere, 7: 139.
  • 56. Suo A. N., Ju T. Z., Ge J. P. 2008 – Relationship between species richness and biomass on environmental gradient in natural forest communities on Mt. Xiaolongshan, northwest China – For. Stud. Chin. 10: 212-219.
  • 57. Szwagrzyk J., Gazda A. 2007 – Above-ground standing biomass and tree species diversity in natural stands of Central Europe – J. Veg. Sci. 18: 555-562.
  • 58. Tao Y., Wu G. L., Zhang Y. M. 2017 – Dune-scale distribution pattern of herbaceous plants and their relationship with environmental factors in a saline-alkali desert in Central Asia – Sci. Total Environ. 576: 473-480.
  • 59. Tao Y., Zhang Y. M., Downing A. 2013 – Similarity and difference in vegetation structure of three desert shrub communities under the same temperate climate but with different microhabitats – Bot. Stud. 54: 59.
  • 60. Tao Y., Zhang Y. M. 2012 – Interspecific associations among main species in Artemisia songarica communities in Junggar Basin, China – J. Desert Res. 32: 1308-1314 (in Chinese, English summary).
  • 61. Török P., T-Krasznai E., B-Béres V., Bácsi I., Borics G., Tóthmérész B. 2016 – Functional diversity supports the biomass-diversity humped-back relationship in phytoplankton assemblages – Funct. Ecol. 30: 1593-1602.
  • 62. van Coller H., Siebert F. 2014 – Herbaceous biomass species diversity relationships in nutrient hotspots of a semi-arid African riparian ecosystem – Afr. J. Range For. Sci. 32: 1-11.
  • 63. Vetaas O. R. 1993 – Spatial and temporal vegetation changes along a moisture gradient in north-eastern Sudan – Biotropica, 25: 164-175.
  • 64. Waide R. B., Willig M. R., Steiner C. F., Mittelbach G., Gough L., Dodson S. I., Juday G. P., Parmenter R. 1999 – The relationship between productivity and species richness – Ann. Rev. Ecol. Syst. 30: 257-300.
  • 65. Wang X., Jiang J., Lei J., Zhang W., Qian Y. 2003 – Distribution of ephemeral plants and their significance in dune stabilization in Gurbantunggut Desert – J. Geogr. Sci. 58: 598-605.
  • 66. Wang G., Li H., An M., Ni J., Ji S., Wang J. 2011 – A regional-scale consideration of the effects of species richness on above-ground biomass in temperate natural grasslands of China – J. Veg. Sci. 22: 414-424.
  • 67. White A. S., Witham J. W., Kimball H. A. J. 1999 – Relationship between plant species richness and biomass in a coastal Maine Quercus-Pinus forest – J. Veg. Sci. 10:755-762.
  • 68. Whittaker R. B., Heegaard E. 2003 – What is the observed relationship between species richness and productivity? – Ecology, 84: 3384-3390.
  • 69. Wilson J. B., Steel J. B., Newman J. E., King Mc G. W. 2000 – Quantitative aspects of community structure examined in a semi-arid grassland – J. Ecol. 88: 749-756.
  • 70. Wilson J. B. 2011 – The twelve theories of co-existence in plant communities: the doubtful, the important and the unexplored – J. Veg. Sci. 22: 184-195.
  • 71. Wu X., Wang X., Tang Z., Shen Z., Zheng C., Xia X., Fang J. 2015 – The relationship between species richness and biomass changes from boreal to subtropical forests in China – Ecography, 38: 602-613.
  • 72. Yuan S. F., Tang H. P. 2010 – Research advances in the eco-physiological characteristics of ephemerals adaptation to habitats – Acta Pratacult. Sin. 19: 240-247 (in Chinese, English summary).
  • 73. Zhang L., Chen C. 2002 – On the general characteristics of plant diversity of Gurbantunggut sandy desert – Acta Ecol. Sin. 22: 1923-1932 (in Chinese, English summary).
  • 74. Zhang S., Wang T., Wang T., Lu A., Ge J. 2010 – Spatial-temporal variation of the precipitation in Xinjiang and its abrupt change in recent 50 years – J. Desert Res. 30: 668-674 (in Chinese, English summary).
  • 75. Zhang Y., Chen H. Y. H., Taylor A. R. 2017 – Positive species diversity and aboveground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees – Funct. Ecol. 31: 419-426.
  • 76. Zhang Y., Chen H. Y. H. 2015 – Individual size inequality links forest diversity and aboveground biomass – J. Ecol. 103: 1245-252.
  • 77. Zhou X., Bowker M., Tao Y., Wu L., Zhang Y. 2018 – Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics – Sci. Total Environ. 626: 99-108.
  • 78. Zobel K., Liira J. 1997 – A scale-independent approach to the richness vs biomass relationship in ground-layer plant communities – Oikos, 80: 325-332.
  • 79. Zuo X. A., Zhao X. Y., Zhang T. H., Wang S. K., Luo Y. Y., Zhou X. 2013 – Seasonal changes in the relationship between species richness and community biomass in grassland under grazing and exclosure, Horqin Sandy Land, northern China – Sci. Cold Arid Reg. 5: 117-183.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-add835a8-c924-456a-9d53-3875043dee05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.