PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of CO2 emissions for selected flight parameters of a business jet aircraft

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last two decades, there has been observed a noticeable increase in the popularity and availability of air transport services, including regional ones. This intensive development of transport is accompanied by an increase in the adverse impact to the environment, increases noise level, and exhausts emissions, despite the modification and modernization of engines. Determining the emission for regional flights takes into account the specificity of the aircrafts design, such as the size of the aircraft and the performance of the engines. In this article, an attempt was made to determine the CO2 emissions of a business jet flying from Gdansk to Rzeszow. The methodology of the research (the method of calculating emissions based on fuel consumption) and the performance characteristics of the aircraft engines have been described. In the first part of the article, the speed-altitude characteristics of the DGEN-380 engine for different cruise parameters were determined using the virtual engine test bench WESTT CS/B. These characteristics have enabled the engine to match the flight characteristics (altitude, speed). For specific flight parameters, the thrust and fuel consumption were determined. On this basis, for the adopted trajectory and flight time of an aircraft equipped with two DGEN-380 engines, total fuel consumption and CO2 emission factors and values in CRUISE phase was determined with regard to the wind speed and direction. The obtained results were illustrated graphically and discussed.
Słowa kluczowe
Twórcy
  • Gdynia Maritime UniversityFaculty of Navigation Department of Ship Operation Jana Pawla II Av. 3, 81-345 Gdynia, Poland tel.: +48 58 5586182
  • Rzeszow University of Technology Faculty of Mechanical Engineering and Aeronautics Department of Aircraft and Aircraft Engines Powstańców Warszawy Av. 8, 35-959 Rzeszow, Poland tel.: +48 17 8651466
Bibliografia
  • [1] Antoine, N. E., Kroo, I. M., Framework for Aircraft Conceptual Design and Environmental Performance Studies, AIAA Journal, Vol. 43, 10, pp. 2100-2109, 2005.
  • [2] Archer, L. J., Aircraft Emissions and the Environment, Oxford Institute for Energy Studies, 1993.
  • [3] Bower, G., Kroo, I., Multi-Objective Aircraft Optimization for Minimum Cost and Emissions over Specific Route Networks, The 26th Congress of ICAS and 8th AIAA ATIO, 2008.
  • [4] Cichosz, E. et al., Charakterystyka i zastosowanie napędów, Wyd. Komunikacji i Łączności, Warszawa 1980.
  • [5] Garrison, M., DuBois, D., Baughcum, S., Aircraft Emission Inventories & Scenarios, presented to the Ultra-Efficient Engine Technology Program (UEET) Technology Forum, Westlake, OH, October 27-29, 2003.
  • [6] Głowacki, P., Szczeciński, S., Transport Lotniczy, Zagrożenia Ekologiczne oraz Sposoby ich Ograniczania, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa 2013.
  • [7] Green, J. E., Greener by Design – the technology challenge, The Aeronautical Journal, Vol. 106, No. 1056, 2002.
  • [8] Hamy, A., Murrieta-Mendoza, A., Botez, R., Flight trajectory optimization to reduce fuel burn and polluting emissions using a performance database and ant colony optimization algorithm. AEGATS2016_23, 2016.
  • [9] Henderson, R. P., Martins, J. R. R. A., Perez, R. E., Aircraft conceptual design for optimal environmental performance, The Aeronautical Journal, Vol. 116, 1175, pp. 1-22, 2012.
  • [10] ICAO, Airport Air Quality Manual, Doc. No. 9889, First Edition, 2011.
  • [11] Jakubowski, R., Evaluation of performance properties of two combustor turbofan engine, Eksploatacja i Niezawodność – Maintenance and Reliability, Vol. 17 (4), pp. 575-581, 2015.
  • [12] Jeż, M., Transport Lotniczy a Zrównoważony Rozwój, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa 2009.
  • [13] Khardi, S., Kurniawan, J., Combined effect of Aircraft Noise and Pollutant Emissions in the Intermediate Atmospheric Layers, International Joint Research Project, Universitas Indonesia – Indonesia INRETS-LTE Report n° 1010, INRETS – FRANCE, 2010.
  • [14] Kim, B. Y., Fleming, G. G., et al., System for assessing Aviation’s Global Emissions 162
  • Determination of CO2 Emissions for Selected Flight Parameters of a Business Jet Aircraft
  • (SAGE). Part 1: model description and inventory results, Transp. Res. D 12, 2007.
  • [15] Łukasik, B., Analysis of the possibility of using full electric technologies for future aircraft propulsion system, in terms of mission energy consumption, NOx/CO2 emission and noise reduction, Rozprawa doktorska, Instytut Lotnictwa, Warszawa 2017.
  • [16] Masiol, M., Harrison, R. M., Aircraft Engine Exhaust Emissions and other Airport-Related Contributions to Ambient Air Pollution: A Review, Atmospheric Environment, Vol. 95, 2014.
  • [17] Merkisz, J., Markowski, J., Pielecha, J., Karpinski, D., Galant, M., The Investigation of the Influence of the Oxygen Additive to Fuel on the Particle Emissions from a Small Turbine Engine, 18 ETH – Conference on Combustion Generated Nanoparticles, Zurich 2014.
  • [18] Penner, J. E., Aviation and the Global Atmosphere, Cambridge University Press, 1999.
  • [19] Price Induction, Manual. WESTT CS/BV, Price Induction, 2013.
  • [20] Ramanathan, V., Feng, Y., Air Pollution, Greenhouse Gases and Climate Change: Global and Regional Perspectives, Atmospheric Environment, Vol. 43, 2009.
  • [21] Schäfer, W. A., Waitz, A. I., Air transportation and environment, Transp. Policy, 34, 2014.
  • [22] Serafino, G., Inter-dependencies between emissions of CO2, NOx & Noise from aviation - multi-objective trajectory optimization to reduce aircraft emissions in case of unforeseen weather events, 29th Congress of the International Council of the Aeronautical Sciences, 2014.
  • [23] Singh, V., Fuel consumption minimization of transport aircraft using real-coded genetic algorithm, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2, 095441001770589, 2017.
  • [24] Singh, V., Sharma, S. K., Evolving base for the fuel consumption optimization in Indian air transport: application of structural equation modeling, European Transport Research Review, 2014.
  • [25] Wang, Y., Xing, Y., Xiongqing, Y., Zhang, S., Flight operation and airframe design for tradeoff between cost and environmental impact, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 095441001774896, 2018.
  • [26] Wilson, D., Korakianitis, T., The design of high-efficiency turbomachinery and gas turbines, The Massachusetts Institute of Technology Press. Cambridge. Massachusetts. London England. Second Edition, 2014.
  • [27] Wuebbles, D., Gupta, M., Ko, M., Evaluating the Impacts of Aviation on Climate Change, EOS, Transactions, American Geophysical Union, Vol. 88, No. 14, pp. 157-160, 2007.
  • [28] www.flightradar24.com.
  • [29] www.windy.com.
  • [30] Wygonik, P., Kryteria doboru parametrów silnika turbinowego do samolotu wielozadanio-wego, Silniki Spalinowe, Nr 4, 2006.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-add6b7ae-afd1-40ae-a24d-1741533a16a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.