PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Medical imaging is a useful tool for disease detection and diagnostic imaging technology has enabled early diagnosis of medical conditions. Manual image analysis methods are labor-intense and they are susceptible to intra as well as inter-observer variability. Automated medical image analysis techniques can overcome these limitations. In this review, we investigated Transfer Learning (TL) architectures for automated medical image analysis. We discovered that TL has been applied to a wide range of medical imaging tasks, such as segmentation, object identification, disease categorization, severity grading, to name a few. We could establish that TL provides high quality decision support and requires less training data when compared to traditional deep learning methods. These advantageous properties arise from the fact that TL models have already been trained on large generic datasets and a task specific dataset is only used to customize the model. This eliminates the need to train the models from scratch. Our review shows that AlexNet, ResNet, VGGNet, and GoogleNet are the most widely used TL models for medical image analysis. We found that these models can understand medical images, and the customization refines the ability, making these TL models useful tools for medical image analysis.
Twórcy
  • Gokaraju Rangaraju Institute of Engineering & Technology, Hyderabad, India
  • School of Science and Technology, Singapore University of Social Sciences, Singapore
autor
  • Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
  • Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
  • Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
autor
  • Department of Biomedical Imaging, Universiti Malaya Research Imaging Centre, Faculty of Medicine, Universiti Malaya, Malaysia
autor
  • Gokaraju Rangaraju Institute of Engineering & Technology, Hyderabad, India
autor
  • Gokaraju Rangaraju Institute of Engineering & Technology, Hyderabad, India
  • Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Krakow, Poland; Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Gliwice, Poland
  • School of Engineering, Ngee Ann Polytechnic, Clementi, Singapore; School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
Bibliografia
  • [1] Ng K, Faust O, Sudarshan V, Chattopadhyay S. Data overloading in medical imaging: Emerging issues, challenges and opportunities in efficient data management. J Med Imaging Health Inf 2015;5(4):755–64.
  • [2] M. L. Giger, K. Suzuki, Computer-aided diagnosis, in: Biomedical information technology, Elsevier, 2008, pp. 359– XXII.
  • [3] Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 2007;31(4–5):198–211.
  • [4] England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide for authors and reviewers. Am J Roentgenol 2019;212(3):513–9.
  • [5] Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ. Artificial intelligence in radiology. Nat Rev Cancer 2018;18 (8):500–10.
  • [6] Angelov P, Sperduti A. Challenges in deep learning, European Symposium on Artificial. Neural Networks 2016;24:489–96.
  • [7] Chen X-W, Lin X. Big data deep learning: challenges and perspectives. IEEE Access 2014;2:514–25.
  • [8] Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst 2018;42(11):1–13.
  • [9] Acharya R, Wasserman R, Stevens J, Hinojosa C. Biomedical imaging modalities: a tutorial. Comput Med Imaging Graph 1995;19(1):3–25.
  • [10] C. Whiston, F. E. Prichard, X-ray methods, inis (1987).
  • [11] Lewis RA. Medical phase contrast x-ray imaging: current status and future prospects. Phys Med Biol 2004;49(16):3573.
  • [12] Faust O, Acharya UR, Meiburger KM, Molinari F, Koh JE, Yeong CH, et al. Comparative assessment of texture features for the identification of cancer in ultrasound images: a review. Biocybernet Biomed Eng 2018;38(2):275–96.
  • [13] Faust O, Acharya UR, Sudarshan VK, San Tan R, Yeong CH, Molinari F, et al. Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review. Physica Med 2017;33:1–15.
  • [14] Acharya UR, Faust O, Molinari F, Sree SV, Junnarkar SP, Sudarshan V. Ultrasound-based tissue characterization and classification of fatty liver disease: A screening and diagnostic paradigm. Knowl-Based Syst. 2015;75:66-77.
  • [15] Acharya UR, Faust O, Sree SV, Molinari F, Suri JS. Thyroscreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed 2012;107 (2):233–41.
  • [16] Acharya RU, Faust O, Alvin APC, Sree SV, Molinari F, Saba L, et al. Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. J Med Syst 2012;36(3):1861–71.
  • [17] Katti G, Ara SA, Shireen A. Magnetic resonance imaging (mri)–a review. Int J Dental Clin 2011;3(1):65–70.
  • [18] Slichter CP. Principles of magnetic resonance, vol. 1. Springer Science & Business Media; 2013.
  • [19] Griffeth LK. Use of pet/ct scanning in cancer patients: technical and practical considerations, in: Baylor University Medical Center Proceedings, vol. 18, Taylor & Francis, 2005, pp. 321–330.
  • [20] Bailey DL, Maisey MN, Townsend DW, Valk PE. Positron emission tomography, vol. 2. Springer; 2005.
  • [21] Faust O, Acharya R, Ng E-Y-K, Ng K-H, Suri JS. Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 2012;36(1):145–57.
  • [22] Krishnan MMR, Faust O. Automated glaucoma detection using hybrid feature extraction in retinal fundus images. J. Mech Med Biol 2013;13(01):1350011.
  • [23] Buzug TM. Computed tomography, in: Springer handbook of medical technology, Springer, 2011, pp. 311–342.
  • [24] Hsieh J. Computed tomography: Principles, design, artifacts, and recent advances, vol. pm188, 2009.
  • [25] Elangovan A, Jeyaseelan T. Medical imaging modalities: A survey, in: 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), ieee, 2016, pp. 1–4.
  • [26] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88.
  • [27] Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. Ieee Access 2017;6:9375–89.
  • [28] https://blog.radiology.virginia.edu/different-imaging-testsexplained/ (2019).
  • [29] Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221–48.
  • [30] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012;25:1097–105.
  • [31] Salvi M, Molinari F, Acharya UR, Molinaro L, Meiburger KM. Impact of stain normalization and patch selection on the performance of convolutional neural networks in histological breast and prostate cancer classification. Comput Methods Prog Biomed Update 2021;1 100004.
  • [32] F. J. Díaz-Pernas, M. Martínez-Zarzuela, M. Antón-Rodríguez, D. González-Ortega, A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network, in: Healthcare, Vol. 9, Multidisciplinary Digial Publishing Institute, 2021, p. 153.
  • [33] Song Q, Zhao L, Luo X, Dou X. Using deep learning for classification of lung nodules on computed tomography images. J Healthcare Eng 2017;2017.
  • [34] Abdar M, Samami M, Mahmoodabad SD, Doan T, Mazoure B, Hashemifesharaki R, et al. Uncertainty quantification in skin cancer classification using threeway decision-based bayesian deep learning. Comput Biol Med 2021;104418.
  • [35] Nayak DR, Das D, Majhi B, Bhandary SV, Acharya UR. Ecnet: An evolutionary convolutional network for automated glaucoma detection using fundus images. Biomed Signal Process Control 2021;67 102559.
  • [36] Park B, Park H, Lee SM, Seo JB, Kim N. Lung segmentation on hrct and volumetric ct for diffuse interstitial lung disease using deep convolutional neural networks. J Digit Imaging 2019;32(6):1019–26.
  • [37] Jia H, Xia Y, Song Y, Cai W, Fulham M, Feng DD. Atlas registration and ensemble deep convolutional neural network-based prostate segmentation using magnetic resonance imaging. Neurocomputing 2018;275:1358–69.
  • [38] Wernick MN, Yang Y, Brankov JG, Yourganov G, Strother SC. Machine learning in medical imaging. IEEE Signal Process Mag 2010;27(4):25–38.
  • [39] Zeiler MD, Fergus R. Visualizing and understanding convolutional networks, in: European conference on computer vision, Springer, 2014, pp. 818–833.
  • [40] Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed 2018;161:1–13.
  • [41] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86 (11):2278–324.
  • [42] Qassim HA, Verma, D. Feinzimer, Compressed residual-vgg16 cnn model for big data places image recognition, in: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, 2018, pp. 169–175.
  • [43] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 770–8.
  • [44] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 2818–26.
  • [45] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 4700–8.
  • [46] Chollet F. Xception: Deep learning with depth wise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 1251–8.
  • [47] Bell E. A implementation of squeezenet in chainer; 2016.
  • [48] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 1–9.
  • [49] Gavrishchaka V, Yang Z, Miao R, Senyukova O. Advantages of hybrid deep learning frameworks in applications with limited data. Int J Mach Learn Comput 2018;8(6):549–58.
  • [50] Rattani A, Derakhshani R. On fine-tuning convolutional neural networks for smartphone based ocular recognition, in: 2017 IEEE international joint conference on biometrics (IJCB), IEEE, 2017, pp. 762–767.
  • [51] Too EC, Yujian L, Njuki S, Yingchun L. A comparative study of finetuning deep learning models for plant disease identification. Comput Electron Agric 2019;161:272–9.
  • [52] Zhou K, He W, Xu Y, Xiong G, Cai J. Feature selection and transfer learning for alzheimer’s disease clinical diagnosis. Appl Sci 2018;8(8):1372.
  • [53] Guerrero R, Ledig C, Rueckert D. Manifold alignment and transfer learning for classification of alzheimer’s disease. In: International Workshop on Machine Learning in Medical Imaging, Springer, 2014, pp. 77–84.
  • [54] Mehmood A, Yang S, Feng Z, Wang M, Ahmad AS, Khan R, et al. A transfer learning approach for early diagnosis of Alzheimer’s disease on mri images. Neuroscience 2021;460:43–52.
  • [55] Maqsood M, Nazir F, Khan U, Aadil F, Jamal H, Mehmood I, et al. Transfer learning assisted classification and detection of alzheimer's disease stages using 3d mri scans. Sensors 2019;19(11):2645.
  • [56] Afzal S, Maqsood M, Nazir F, Khan U, Aadil F, Awan KM, et al. A data augmentation-based framework to handle class imbalance problem for alzheimer’s stage detection. IEEE Access 2019;7:115528–39.
  • [57] Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ, et al. Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. J Med Syst 2019;43(9):1–14.
  • [58] Li H, Parikh NA, He L. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci 2018;12:491.
  • [59] Dominic N, Cenggoro TW, Budiarto A, Pardamean B, et al. Transfer learning using inception-resnet-v2 model to the augmented neuroimages data for autism spectrum disorder classification. Commun Math Biol Neurosci 2021;2021. Article–ID.
  • [60] Swati ZNK, Zhao Q, Kabir M, Ali F, Ali Z, Ahmed S, et al. Brain tumor classification for mr images using transfer learning and fine-tuning. Comput Med Imaging Graph 2019;75:34–46.
  • [61] Karimi D, Warfield SK, Gholipour A. Transfer learning in medical image segmentation: New insights from analysis of the dynamics of model parameters and learned representations. Artif Intell Med 2021;116 102078.
  • [62] Podder P, Bharati S, Rahman MA, Kose U. Transfer learning for classification of brain tumor. In: Deep learning for biomedical applications. CRC Press; 2021. p. 315–28.
  • [63] Yang F, Zhang Y, Lei P, Wang L, Miao Y, Xie H, et al. A deep learning segmentation approach in free-breathing real-time cardiac magnetic resonance imaging. Biomed Res Int 2019;2019.
  • [64] Chen V, Barker AJ, Golan R, Scott MB, Huh H, Wei Q, et al. Effect of age and sex on fully automated deep learning assessment of left ventricular function, volumes, and contours in cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 2021:1–9.
  • [65] Ismael AM, Sengür A. Deep learning approaches for covid-19 detection based on chest x-ray images. Expert Syst Appl 2021;164 114054.
  • [66] Jain R, Gupta M, Taneja S, Hemanth DJ. Deep learning-based detection and analysis of COVID-19 on chest X-ray images. Appl Intell 2021;51(3):1690–700.
  • [67] Amyar A, Modzelewski R, Li H, Ruan S. Multi-task deep learning based ct imaging analysis for covid-19 pneumonia: Classification and segmentation. Comput Biol Med 2020;126 104037.
  • [68] Tartaglione E, Barbano CA, Berzovini C, Calandri M, Grangetto M. Unveiling covid-19 from chest x-ray with deep learning: a hurdles race with small data. Int J Environ Res Public Health 2020;17(18):6933.
  • [69] Harmon SA, Sanford TH, Xu S, Turkbey EB, Roth H, Xu Z, et al. Artificial intelligence for the detection of covid-19 pneumonia on chest ct using multinational datasets. Nat Commun 2020;11(1):1–7.
  • [70] Chacon A, Plasencia JT, Avila G, Aboubakr M, Briski R, Mendez A, et al. A deep learning model to aid in detection of pneumothorax via cxr: a retrospective cohort analysis of the nih-based cxr dataset. Chest 2019;156(4):A917–8.
  • [71] Gabruseva T, Poplavskiy D, Kalinin A. Deep learning for automatic pneumonia detection, in. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. p. 350–1.
  • [72] Labhane G, Pansare R, Maheshwari S, Tiwari R, Shukla A. Detection of pediatric pneumonia from chest X-ray images using cnn and transfer learning. In: 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE). p. 85–92.
  • [73] Lee D-H, Li Y, Shin B-S. Mid-level feature extraction method based transfer learning to small-scale dataset of medical images with visualizing analysis. J Inf Process Syst 2020;16 (6).
  • [74] Yarnall J. X-ray classification using deep learning and the mimic-cxr dataset. Villanova University; 2020. Ph.D. Thesis.
  • [75] Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deepcovid: Predicting covid-19 from chest x-ray images using deep transfer learning. Med Image Anal 2020;65 101794.
  • [76] Marinelli B, Kang M, Martini M, Zech JR, Titano J, Cho S, et al. Combination of active transfer learning and natural language processing to improve liver volumetry using surrogate metrics with deep learning. Radiol Artif Intell 2019;1(1) e180019.
  • [77] R. Du, V. Vardhanabhuti, 3d-radnet: Extracting labels from dicom metadata for training general medical domain deep 3d convolution neural networks, in: Medical Imaging with Deep Learning, PMLR, 2020, pp. 174–192.
  • [78] Tashk A, Herp J, Nadimi E, Sdu SU. Automatic segmentation of colorectal polyps based on a novel and innovative convolutional neural network approach. WSEAS Trans Syst Control 2019;14:384–91.
  • [79] Shin Y, Qadir HA, Aabakken L, Bergsland J, Balasingham I. Automatic colon polyp detection using region based deep cnn and post learning approaches. IEEE Access 2018;6:40950–62.
  • [80] Dhawan S, Singh K, Arora M. Cervix image classification for prognosis of cervical cancer using deep neural network with transfer learning. EAI Endorsed Trans Pervasive Health Technol 2021;7(27) e5.
  • [81] Sharma A, Jindal N. Image translation and super resolution using generative adversarial networks. Ph.D. Thesis 2019.
  • [82] Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with deep learning. Sci Rep 2018;8(1):1–7.
  • [83] Matsuyama E, Takehara M, Tsai D-Y, et al. Using a wavelet-based and fine-tuned convolutional neural network for classification of breast density in mammographic images. Open J Med Imaging 2020;10(01):17.
  • [84] Collaboration ISI et al. Siim-isic 2020 challenge dataset. Int Skin Imaging Collab 2020.
  • [85] Karki S, Kulkarni P, Stranieri A. February). Melanoma classification using EfficientNets and Ensemble of models with different input resolution. In: 2021 Australasian Computer Science Week Multiconference. p. 1–5.
  • [86] Gangwar AK, Ravi V. Diabetic retinopathy detection using transfer learning and deep learning, in: Evolution in Computational Intelligence, Springer, 2021, pp. 679–689.
  • [87] Mishra S, Hanchate S, Saquib Z. Diabetic retinopathy detection using deep learning, in: 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), IEEE, 2020, pp. 515–520.
  • [88] Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172 (5):1122–31.
  • [89] Qin X, Zhu Y, Wang W, Gui S, Zheng B, Wang P. 3d multiscale discriminative network with multi-directional edge loss for prostate zonal segmentation inbi-parametric mr images. Neurocomputing 2020;418:148–61.
  • [90] Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Prostatex challenge data. The cancer imaging archive 2017;10:K9TCIA.
  • [91] Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Computeraided detection of prostate cancer in mri. IEEE Trans Med Imaging 2014;33(5):1083–92.
  • [92] Perez Malla CU, Valdes Hernandez MdC, Rachmadi MF, Komura T. Evaluation of enhanced learning techniques for segment in gischaemic stroke lesions in brain magnetic resonance perfusion images using a convolutional neural network scheme Front Neuroinf 2019;13:33.
  • [93] Wingate J, Kollia I, Bidaut L, Kollias S. Unified deep learning approach for prediction of parkinson’s disease. IET Image Proc 2020;14(10):1980–9.
  • [94] Dong Q, Zhang J, Li Q, Thompson PM, Caselli RJ, Ye J, et al. Multi-task dictionary learning based on convolutional neural networks for longitudinal clinical score predictions in alzheimer’s disease. International Workshop on Human Brain and Artificial Intelligence, Springer 2019:21–35.
  • [95] Dawud AM, Yurtkan K, Oztoprak H. Application of deep learning in neuroradiology: Brain haemorrhage classification using transfer learning. Comput Intell Neurosci 2019;2019.
  • [96] Amin J, Sharif M, Yasmin M, Saba T, Anjum MA, Fernandes SL. A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning. J Med Syst 2019;43(11):1–16.
  • [97] Lao J, Chen Y, Li Z-C, Li Q, Zhang J, Liu J, et al. A deep learning based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017;7(1):1–8.
  • [98] Liang S, Zhang R, Liang D, Song T, Ai T, Xia C, et al. Multimodal 3d densenet for idh genotype prediction in gliomas. Genes 2018;9(8):382.
  • [99] Mc Namara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integrated Pharm Res Pract 2019;8:1.
  • [100] Reddy KS. India wakes up to the threat of cardiovascular diseases (2007).
  • [101] Yang J, Li S, Xu W. Active learning for visual image classification method based on transfer learning. IEEE Access 2017;6:187–98.
  • [102] Mazo C, Bernal J, Trujillo M, Alegre E. Transfer learning for classification of cardiovascular tissues in histological images. Comput Methods Programs Biomed 2018;165:69–76.
  • [103] Miyagawa M, Costa MGF, Gutierrez MA, Costa JPGF, Costa Filho CFF. Detecting vascular bifurcation in ivoct images using convolutional neural networks with transfer learning. Ieee Access 2019;7:66167–75.
  • [104] Gupta V, Demirer M, Bigelow M, Little KJ, Candemir S, Prevedello LM, et al. Performance of a deep neural network algorithm based on a small medical image dataset: Incremental impact of 3d-to-2d reformation combined with novel data augmentation, photometric conversion, or transfer learning. J Digit Imaging 2019:1–8.
  • [105] Wang K, Zhang X, Huang S, Chen F, Zhang X, Huangfu L. Learning to recognize thoracic disease in chest x-rays with knowledge-guided deep zoom neural networks. IEEE Access 2020;8:159790–805.
  • [106] Wang C, Elazab A, Jia F, Wu J, Hu Q. Automated chest screening based on a hybrid model of transfer learning and convolutional sparse denoising autoencoder. Biomed Eng Online 2018;17(1):1–19.
  • [107] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, et al., Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 590–597.
  • [108] Choudhary P, Hazra A. Chest disease radiography in twofold: using convolutional neural networks and transfer learning. Evolving Systems 2019:1–13.
  • [109] Oliveira H, dos Santos J. Deep transfer learning for segmentation of anatomical structures in chest radiographs. In: 2018 ssss SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). p. 204–11.
  • [110] Zhou S, Zhang X, Zhang R. Identifying cardiomegaly in chest x-ray 8 using transfer learning, in: MEDINFO 2019: Health and Wellbeing e-Networks for All, IOS Press, 2019, pp. 482–486.
  • [111] Chouhan V, Singh SK, Khamparia A, Gupta D, Tiwari P, Moreira C, et al. A novel transfer learning based approach for pneumonia detection in chest x-ray images. Appl Sci 2020;10(2):559.
  • [112] Jain R, Nagrath P, Kataria G, Kaushik VS, Hemanth DJ. Pneumonia detection in chest x-ray images using convolutional neural networks and transfer learning. Measurement 2020;165 108046.
  • [113] Alsabahi Y, Fan L, Feng X. Image classification method in dr image based on transfer learning. In: 2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA). p. 1–4.
  • [114] Feng X, Bernard ME, Hunter T, Chen Q. Improving accuracy and robustness of deep convolutional neural network based thoracic oar segmentation. Phys Med Biol 2020;65 (7):07NT01.
  • [115] Ronneberger O, Fischer P, Brox T, U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234–241.
  • [116] Agrawal T, Gupta R, Narayanan S. On evaluating cnn representations for low resource medical image classification. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). p. 1363–7.
  • [117] Ayyar M, Mathur P, Shah RR, Sharma SG. Harnessing ai for kidney glomeruli classification. In: IEEE International Symposium on Multimedia (ISM) IEEE 2018: 2018: pp. 17–20.
  • [118] Chen Q. Hu, A transfer learning approach for malignant prostate lesion detection on multiparametric mri. Technol Cancer Res Treat 2019;18. 1533033819858363.
  • [119] Kang J, Gwak J. Ensemble of instance segmentation models for polyp segmentation in colonoscopy images. IEEE Access 2019;7:26440–7.
  • [120] Lan L, Ye C, Wang C, Zhou S. Deep convolutional neural networks for wce abnormality detection: Cnn architecture, region proposal and transfer learning. IEEE Access 2019;7:30017–32.
  • [121] Ma Y, Peng Y. Lymph node detection method based on multi source transfer learning and convolutional neural network. Int J Imaging Syst Technol 2020;30(2):298–310.
  • [122] Nadimi ES, Buijs MM, Herp J, Kroijer R, Kobaek-Larsen M, Nielsen E, et al. Application of deep learning for autonomous detection and localization of color ectalpolyps in wireless colon capsule endoscopy. Comput Electr Eng 2020;81 106531.
  • [123] Ravishankar H, Sudhakar P, Venkataramani R, Thiruvenkadam S, Annangi P, Babu N, et al. In: Understanding the mechanisms of deep transfer learning for medical images. Cham: Springer; 2016. p. 188–96.
  • [124] C. Sun, A. Xu, D. Liu, Z. Xiong, F. Zhao, W. Ding, Deep learning-based classification of liver cancer histopathology images using only global labels, IEEEjournalofbiomedicalandhealthinformatics24(6)(2019) 1643–1651.
  • [125] Abbasi AA, Hussain L, Awan IA, Abbasi I, Majid A, Nadeem MSA, et al. Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn Neurodyn 2020;14(4):523–33.
  • [126] Hwang S, Kim HE. In: Self-transfer learning for weakly supervised lesion localization. Cham: Springer; 2016. p. 239–46.
  • [127] Gordienko Y, Gang P, Hui J, Zeng W, Kochura Y, Alienin O, et al. Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. International Conference on Computer Science, Engineering and Education Applications, Springer 2018:638–47.
  • [128] Stirenko S, Kochura Y, Alienin O, Rokovyi O, Gordienko Y, Gang P, et al. Chest x-ray analysis of tuberculosis by deep learning with segmentation and augmentation. In: 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). p. 422–8.
  • [129] Leader JK, Zheng B, Rogers RM, Sciurba FC, Perez A, Chapman BE, et al. Automated lung segmentation in x-ray computed tomography: development and evaluation of a heuristic threshold-based scheme1. Acad Radiol 2003;10 (11):1224–36.
  • [130] Chen C, Dou Q. Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation, in: International workshop on machine learning in medical imaging, Springer, 2018, pp. 143–151.
  • [131] Sawada Y, Kozuka K. Transfer learning method using multiprediction deep boltzmann machines for a small scale dataset. In: 2015 14th IAPR International Conference on Machine Vision Applications (MVA). p. 110–3.
  • [132] Hussein S, Kandel P, Bolan CW, Wallace MB, Bagci U. Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches. IEEE Trans Med Imaging 2019;38(8):1777–87.
  • [133] Abbas A, Abdelsamea MM, Gaber MM. Classification of covid-19 in chest x-ray images using detrac deep convolutional neural network. Appl Intelligence 2021;51 (2):854–64.
  • [134] Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med 2020;43 (2):635–40.
  • [135] Ahsan M, Gomes R, Denton A. Application of a convolutional neural network using transfer learning for tuberculosis detection. In: 2019 IEEE International Conference on Electro Information Technology (EIT). p. 427–33.
  • [136] Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S. Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE J Biomed Health Inf 2016;21(1):76–84.
  • [137] da Nobrega RVM, Rebouças Filho PP, Rodrigues MB, da Silva SP, Junior CMD, de Albuquerque VHC. Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks. Neural Comput Appl 2018:1–18.
  • [138] O’Quinn W, Haddad RJ, Moore DL. Pneumonia radiograph diagnosis utilizing deep learning network. In: 2019 IEEE ttt International Conference on Electronic Information and Communication Technology (ICEICT). p. 763–7.
  • [139] Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO, et al. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2016;2(4):388.
  • [140] Zhang S, Sun F, Wang N, Zhang C, Yu Q, Zhang M, et al. Computer-aided diagnosis (cad) of pulmonary nodule of thoracic ct image using transfer learning. J Digit Imaging 2019;32(6):995–1007.
  • [141] Xiong J, Li X, Lu L, Schwartz LH, Fu X, Zhao J, et al. Implementation strategy of a cnn model affects the performance of ct assessment of egfr mutation status in lung cancer patients. IEEE Access 2019;7:64583–91.
  • [142] Aiga S, Hidenori S, Shoji K, Hayaru S. Feature representation analysis of deep convolutional neural network using twostage feature transfer-an application for diffuse lung disease classification. IPSJ Trans. Mathematical Modeling and Its Applications 2018;11(3):74–83.
  • [143] Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest ct findings in coronavirus disease-19 (covid-19): relationship to duration of infection. Radiology 2020;200463.
  • [144] Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automateddetectionofcovid19casesusingdeepneuralnetworks with x-ray images. Comput Biol Med 2020;121 103792.
  • [145] Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci Rep 2020;10(1):1–11.
  • [146] Kim M, Lee BD. Automatic lung segmentation on chest X-rays using self-attention deep neural network. Sensors 2021;21(2):369.
  • [147] Fung DL, Liu Q, Zammit J, Leung CKS, Hu P. Self-supervised deep learning model for COVID-19 lung CT image segmentation highlighting putative causal relationship among age, underlying disease and COVID-19. Journal of Translational Medicine 2021;19(1):1–18.
  • [148] Wang B, Jin S, Yan Q, Xu H, Luo C, Wei L, et al. AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system. Appl Soft Comput 2021;98 106897.
  • [149] Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology 2020.
  • [150] Zhao X, Zhang P, Song F, Fan G, Sun Y, Wang Y, et al. D2A UNet: Automatic Segmentation of COVID-19 CT Slices Based on Dual Attention and Hybrid Dilated Convolution. In: Computers in biology and medicine. p. 104526.
  • [151] Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 2019;39 (6):1856–67.
  • [152] Ibtehaz N, Rahman MS. Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Networks 2020;121:74–87.
  • [153] R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2015., CA: a cancer journal for clinicians 65 (1) (2015) 5–29.
  • [154] Dreyfuss D. Beyond randomized, controlled trials. Curr Opin Crit Care 2004;10(6):574–8.
  • [155] Byra M, Sznajder T, Korzinek D, Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Nowicki A, et al. Impact of ultrasound image reconstruction method on breast lesion classification with deep learning, in. Iberian Conference on Pattern Recognition and Image Analysis, Springer 2019:41–52.
  • [156] Chang J, Yu J, Han T, Chang H-J, Park E. A method for classifying medical images using transfer learning: A pilot study on histopathology of breast cancer. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom). p. 1–4.
  • [157] Guan S, Loew M. Breast cancer detection using transfer learning in convolutional neural networks, in, IEEE Applied Imagery Pattern Recognition Workshop (AIPR) IEEE 2017 2017 1 8.
  • [158] O. Hadad R. Bakalo R. Ben-Ari S. Hashoul G. Amit Classification of breast lesions using cross-modal deep learning, in, IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) IEEE 2017 2017 109 112.
  • [159] Moroianu, S. L., & Rusu, M. (2021, February). Detecting invasive breast carcinoma on dynamic contrast-enhanced MRI. In Medical Imaging 2021: Computer-Aided Diagnosis (Vol. 11597, p. 115970F). International Society for Optics and Photonics.
  • [160] Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 2016;3(3) 034501.
  • [161] Suzuki S, Zhang X, Homma N, Ichiji K, Sugita N, Kawasumi Y, et al. 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE 2016;2016:1382–6.
  • [162] Samala RK, Chan H-P, Hadjiiski LM, Helvie MA, Cha KH, Richter CD. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. Phys Med Biol 2017;62 (23):8894.
  • [163] Valério LM, Alves DH, Cruz LF, Bugatti PH, de Oliveira C, Saito PT, et al. IEEE ttt International Symposium on Computer-Based Medical Systems (CBMS). IEEE 2019;2019:447–52.
  • [164] Fenton JJ, Egger J, Carney PA, Cutter G, D’Orsi C, Sickles EA, et al. Reality check: perceived versus actual performance of community mammographers. Am J Roentgenol 2006;187 (1):42–6.
  • [165] Brodersen J, Siersma VD. Long-term psychosocial consequences of false positive screening mammography. Ann Family Med 2013;11(2):106–15.
  • [166] Serte S, Demirel H. Wavelet-based deep learning for skin lesion classification. IET Image Proc 2019;14(4):720–6.
  • [167] Burdick J, Marques O, Weinthal J, Furht B. Rethinking skin lesion segmentation in a convolutional classifier. J Digit Imaging 2018;31(4):435–40.
  • [168] A.R. Lopez X. Giro-i Nieto J. Burdick O. Marques Skin lesion classification from dermoscopic images using deep learning techniques, in, 13th IASTED international conference on biomedical engineering (BioMed) IEEE 2017 2017 49 54.
  • [169] Mahbod A, Schaefer G, Wang C, Dorffner G, Ecker R, Ellinger I. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Comput Methods Programs Biomed 2020;193 105475.
  • [170] Khan MA, Akram T, Zhang YD, Sharif M. Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework. Pattern Recogn Lett 2021;143:58–66.
  • [171] J. Sachdev S. Shekhar S. Indu Melanoma screening using deep neural networks, in, 3rd International Conference for Convergence in Technology (I2CT) IEEE 2018 2018 1 5.
  • [172] Z. Wu, S. Zhao, Y. Peng, X. He, X. Zhao, K. Huang, X. Wu, W. Fan, F. Li, M. Chen, et al., Studies on different cnn algorithms for face skin disease classification based on clinical images, IEEEAccess7(2019)66505–66511.
  • [173] Karri SPK, Chakraborty D, Chatterjee J. Transfer learning-based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomed Opt Express 2017;8(2):579–92.
  • [174] Motozawa N, An G, Takagi S, Kitahata S, Mandai M, Hirami Y, et al. Optical coherence tomography-based deep-learning models for classifying normal and agerelated macular degeneration and exudative and non-exudative age-related macular degeneration changes. Ophthalmol Ther 2019;8 (4):527–39.
  • [175] Li F, Chen H, Liu Z, Zhang X, Wu Z. Fully automated detection of retinal disorders by image-based deep learning. Graefe’s Arch Clin Exp Ophthalmol 2019;257(3):495–505.
  • [176] Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L, et al. IEEE conference on computer vision and pattern recognition. Ieee 2009;2009:248–55.
  • [177] A. Ke W. Ellsworth O. Banerjee A.Y. Ng P. Rajpurkar April). CheXtransfer: performance and parameter efficiency of ImageNet models for chest X-Ray interpretation 2021 and Learning 116 124.
  • [178] Choi JY, Yoo TK, Seo JG, Kwak J, Um TT, Rim TH. Multicategorical deep learning neural network to classify retinal images: A pilot study employing small database. PLoS ONE 2017;12(11) e0187336.
  • [179] Bhardwaj C, Jain S, Sood M. Transfer learning based robust automatic detection system for diabetic retinopathy grading. Neural Comput Appl 2021:1–21.
  • [180] Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: understanding transfer learning for medical imaging. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. p. 3347–57.
  • [181] Sathananthavathi V, Indumathi G. Encoder enhanced atrous (EEA) unet architecture for retinal blood vessel segmentation. Cognit Syst Res 2021;67:84–95.
  • [182] Li F, Liu Z, Chen H, Jiang M, Zhang X, Wu Z. Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. Transl Vis Sci Technol 2019;8(6). 4-4.
  • [183] Li X, Pang T, Xiong B, Liu W, Liang P, Wang T, et al. 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI). IEEE 2017;2017:1–11.
  • [184] Xu X, Lin J, Tao Y, Wang X. An improved densenet method based on transfer learning for fundus medical images. In: 2018 7th International Conference on Digital Home (ICDH). p. 137–40.
  • [185] R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2016, CA: a cancer journal for clinicians 66 (1) (2016) 7–30.
  • [186] Kitajima K, Kaji Y, Fukabori Y, Yoshida K-I, Suganuma N, Sugimura K. Prostate cancer detection with 3 t mri: comparison of diffusion weighted imaging and dynamic contrast-enhanced mri in combination with t2-weighted imaging. J Magnet Resonance Imaging 2010;31(3):625–31.
  • [187] Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL. Combined diffusion-weighted and dynamic contrast-enhanced mri for prostate cancer diagnosis— correlation with biopsy and histopathology. J Magnet Resonance Imaging 2006;24(1):108–13.
  • [188] Hara N, Okuizumi M, Koike H, Kawaguchi M, Bilim V. Dynamic contrast-enhanced magnetic resonance imaging (dce-mri) is a useful modality for the precise detection and staging of early prostate cancer. The Prostate 2005;62(2):140–7.
  • [189] Wang S, Burtt K, Turkbey B, Choyke P, Summers RM. Computer aideddiagnosis of prostate cancer on multiparametric mri: a technical review of current research. Biomed Res Int 2014;2014.
  • [190] A. H. M. Linkon, M. Labib, T. Hasan, M. Hossain, E. Marium, et al., Deep learning in prostate cancer diagnosis and gleason grading in histopathology images: An extensive study, Informatics in Medicine Unlocked (2021) 100582.
  • [191] Nagpal K, Foote D, Liu Y, Chen P-H-C, Wulczyn E, Tan F, et al. Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. npj Digital Med 2019;2(1):1–10.
  • [192] Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, et al. Automated gleason grading of prostate cancer tissue microarrays via deep learning. Sci Rep 2018;8 (1):1–11.
  • [193] O. J. del Toro, M. Atzori, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, P. Rönnquist, H. Müller, Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade gleason score, in: Medical Imaging2017: Digital Pathology,Vol. 10140, International Society for Optics and Photonics, 2017, p. 1014000.
  • [194] Lucas M, Jansen I, Savci-Heijink CD, Meijer SL, de Boer OJ, van Leeuwen TG, et al. Deep learning for automatic gleason pattern classification for grade group determination of prostate biopsies. Virchows Arch 2019;475(1):77–83.
  • [195] Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep learning system for gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol 2020;21(2):233–41.
  • [196] Egevad L, Swanberg D, Delahunt B, Ström P, Kartasalo K, Olsson H, et al. Identification of areas of grading difficulties in prostate cancer and comparison with artificial intelligence assisted grading. Virchows Arch 2020;477 (6):777–86.
  • [197] Sanford TH, Zhang L, Harmon SA, Sackett J, Yang D, Roth H, et al. Data augmentation and transfer learning to improve generalizability of an automated prostate segmentation model. Am J Roentgenol 2020;215(6):1403–10.
  • [198] L. Yu, X. Yang, H. Chen, J. Qin, P. A. Heng, Volumetric convnets with mixed residual connections for automated prostate segmentation from 3d mr images, in: AAAI Conference on Artificial Intelligence, Vol. 31, 2017, pp. 1–10.
  • [199] Yuan Y, Qin W, Buyyounouski M, Ibragimov B, Hancock S, Han B, et al. Prostate cancer classification with multiparametric mri transfer learning model. Med Phys 2019;46(2):756–65.
  • [200] Zhong X, Cao R, Shakeri S, Scalzo F, Lee Y, Enzmann DR, et al. Deep transfer learning-based prostate cancer classification using 3 tesla multi-parametric mri. Abdominal Radiol 2019;44(6):2030–9.
  • [201] Salvi M, Bosco M, Molinaro L, Gambella A, Papotti M, Acharya UR, et al. A hybrid deep learning approach for gland segmentation in prostate histopathological images. Artif Intell Med 2021;115 102076.
  • [202] https://www.livescience.com/37009-human-body.html (2016).
  • [203] Deepak S, Ameer P. Brain tumor classification using deep cnn features via transfer learning. Comput Biol Med 2019;111 103345.
  • [204] Yang Y, Yan L-F, Zhang X, Han Y, Nan H-Y, Hu Y-C, et al. Glioma grading on conventional mr images: a deep learning study with transfer learning. Front Neurosci 2018;12:804.
  • [205] Jain R, Jain N, Aggarwal A, Hemanth DJ. Convolutional neural network based alzheimer’s disease classification from magnetic resonance brain images. Cognit Syst Res 2019;57:147–59.
  • [206] Deniz E, Sengür A, Kadiroğlu Z, Guo Y, Bajaj V, Budak Ü. Transfer learning based histopathologic image classification for breast cancer detection. Health Inf Sci Syst 2018;6(1):1–7.
  • [207] Talo M, Baloglu UB, Yıldırım Ö , Acharya UR. Application of deep transfer learning for automated brain abnormality classification using mr images. Cognit Syst Res 2019;54:176–88.
  • [208] Kokkalla S, Kakarla J, Venkateswarlu IB, Singh M. Three-class brain tumor classification using deep dense inception residual network. Soft Comput 2021:1–9.
  • [209] F. Jiang, H. Liu, S. Yu, Y. Xie, Breast mass lesion classification in mammograms by transfer learning, in: Proceedings of the 5th international conference on bioinformatics and computational biology, 2017, pp. 59–62.
  • [210] K.A. Thakoor X. Li E. Tsamis P. Sajda D.C. Hood Enhancing the accuracy of glaucoma detection from oct probability maps using convolutional neural networks, in, sss Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE 2019 2019 2036 2040.
  • [211] Abiwinanda N, Hanif M, Hesaputra ST, Handayani A, Mengko TR. Brain tumor classification using convolutional neural network. In: World congress on medical physics and biomedical engineering 2018. Springer; 2019. p. 183–9.
  • [212] Lu S, Lu Z, Zhang Y-D. Pathological brain detection based on alexnet and transfer learning. J Comput Sci 2019;30:41–7.
  • [213] Soekhoe D, Van Der Putten P, Plaat A. On the impact of data set size in transfer learning using deep neural networks. In: International Symposium on Intelligent Data Analysis. Springer; 2016. p. 50–60.
  • [214] Prajapati SA, Nagaraj R, Mitra S. Classification of dental diseases using cnn and transfer learning. In: 5th International Symposium on Computational and Business Intelligence (ISCBI) IEEE 2017 2017 70 74.
  • [215] Ahuja S, Panigrahi BK, Dey N, Rajinikanth V, Gandhi TK. Deep transfer learning-based automated detection of covid19 from lung ct scan slices. Appl Intelligence 2021;51 (1):571–85.
  • [216] Rosenstein MT, Marx Z, Kaelbling LP, Dietterich TG. To transfer or not to transfer, in: NIPS 2005 workshop on transfer learning, Vol. 898, 2005, pp. 1–4.
  • [217] Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2009;22(10):1345–59.
  • [218] Y. Yao G. Doretto Boosting for transfer learning with multiple sources, in, IEEE computer society conference on computer vision and pattern recognition IEEE 2010 2010 1855 1862.
  • [219] Borjali A, Chen AF, Muratoglu OK, Morid MA, Varadarajan KM. Deep learning in orthopedics: How do we build trust in the machine? Healthcare Transformation 2020.
  • [220] Raghavendra U, Rajendra Acharya U, Ng E, Tan J-H, Gudigar A. An integrated index for breast cancer identification using histogram of oriented gradient and kernel locality preserving projection features extracted from thermograms. Quant Infra Red Thermogr J 2016;13 (2):195–209.
  • [221] Gordon L, Grantcharov T, Rudzicz F. Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg 2019;154(11):1064–5.
  • [222] Qin P, Wu K, Hu Y, Zeng J, Chai X. Diagnosis of benign and malignant thyroid nodules using combined conventional ultrasound and ultrasound elasticity imaging. IEEE J Biomed Health Inf 2019;24(4):1028–36.
  • [223] Cao Z, Duan L, Yang G, Yue T, Chen Q. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. BMC Med Imaging 2019;19(1):1–9.
  • [224] Liu S, Xu D, Zhou SK, Pauly O, Grbic S, Mertelmeier T, et al. 3d anisotropic hybrid network. In: Transferring convolutional features from 2d images to 3d anisotropic volumes, in: International Conference on Medical Image Computing and Computer Assisted Intervention. p. 851–8.
  • [225] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, A survey on deep transfer learning, in: International conference on artificial neural networks, Springer, 2018, pp. 270–279.
  • [226] Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big data 2016;3(1):1–40.
  • [227] Altaf F, Islam SM, Akhtar N, Janjua NK. Going deep in medical image analysis: concepts, methods, challenges, and future directions. IEEE Access 2019;7:99540–72.
  • [228] Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 2019;49(4):939–54.
  • [229] Pehrson LM, Nielsen MB, Ammitzbøl Lauridsen C. Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the lidc-idri database: a systematic review. Diagnostics 2019;9(1):29.
  • [230] Sengupta S, Basak S, Saikia P, Paul S, Tsalavoutis V, Atiah F, et al. A review of deep learning with special emphasis on architectures , applications and recent trends. Knowl-based Syst. 2020;194 105596.
  • [231] Shorten C, Khoshgoftaar T. A survey on image data augmentation for deep learning. J Big Data 2019.
  • [232] E. S. Kumar, C. S. Bindu, Medical image analysis using deep learning: a systematic literature review, in: International Conference on Emerging Technologies in Computer Engineering, Springer, 2019, pp. 81–97.
  • [233] Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review, medical image analysis 2019;58 101552.
  • [234] Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, et al. A comprehensive survey on transfer learning. Proc IEEE 2020;109(1):43–76.
  • [235] Wang J, Zhu H, Wang S-H, Zhang Y-D. A review of deep learning on medical image analysis. Mobile Networks Appl 2020:1–30.
  • [236] Shinde S, Kulkarni U, Mane D, Sapkal A. Deep learning-based medical image analysis using transfer learning. In: Health Informatics: A Computational Perspective in Healthcare. Springer; 2021. p. 19–42.
  • [237] Forrest JH, Finlayson NDC, Shearman DJC. Endoscopy in gastrointestinal bleeding. The Lancet 1974;304(7877):394–7.
  • [238] Abdel-Basset M, Chang V, Hawash H, Chakrabortty RK, Ryan M. FSS-2019-nCov: A deep learning architecture for semisupervised few-shot segmentation of COVID-19 infection. Knowl-Based Syst 2021 Jan;5(212) 106647.
  • [239] Abdulmunem AA, Abutiheen ZA, Aleqabie HJ. Recognition of corona virus disease (covid-19) using deep learning network. Int J Electr Comput Eng (IJECE) 2021;11:365–74.
  • [240] E. Acar, E. Sahin, I. Yılmaz, Improving effectiveness of different deep learning-based models for detecting covid-19 from computed tomography (ct) images, Neural Computing and Applications (2021) 1–21.
  • [241] Agrawal T, Choudhary P. Focuscovid: automated covid-19 detection using deep learning with chest x-ray images. Evolving Systems 2021:1–15.
  • [242] Singh D, Kumar V, Kaur M, et al. Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks. Eur J Clin Microbiol Infect Dis 2020;39:1379–89.
  • [243] Zhang YD, Satapathy SC, Zhang X, Wang SH. Covid-19 diagnosis via DenseNet and optimization of transfer learning setting. Cogn Comput 2021 Jan;18:1–7.
  • [244] Wang SH, Fernandes S, Zhu Z, Zhang YD. AVNC: Attention-based VGG-style network for COVID-19 diagnosis by CBAM. IEEE Sens J 2021.
  • [245] Ahuja S, Panigrahi BK, Dey N, Rajinikanth V, Gandhi TK. Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. Appl Intell 2021;51 (1):571–85.
  • [246] Wang SH, Zhang YD. DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Trans Multimedia Comput, Commun Appl (TOMM) 2020;16 (2s):1–9.
  • [247] Wang SH, Zhou Q, Yang M, Zhang YD. ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation. Front Aging Neurosci 2021 Jun;18 (13):313.
  • [248] Caroppo A, Leone A, Siciliano P. Deep transfer learning approaches for bleeding detection in endoscopy images. Comput Med Imaging Graph 2021;88 101852.
  • [249] Ghosh T, Chakareski J. Deep transfer learning for automated intestinal bleeding detection in capsule endoscopy imaging. J Digit Imaging 2021:1–14.
  • [250] Kim YJ, Bae JP, Chung JW, Park DK, Kim KG, Kim YJ. New polyp image classification technique using transfer learning of network-in-network structure in endoscopic images. Sci Rep 2021;11(1):1–8.
  • [251] Wang Y, Feng Z, Song L, Liu X, Liu S. Multiclassification of endoscopic colonoscopy images based on deep transfer learning. Comput Math Methods Med 2021.
  • [252] Patrini I, Ruperti M, Moccia S, Mattos LS, Frontoni E, De Momi E. Transfer learning for informative-frame selection in laryngoscopic videos through learned features. Med Biol Eng Comput 2020;58(6):1225–38.
  • [253] Zhou T, Han G, Li BN, Lin Z, Ciaccio EJ, Green PH, et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: A deep learning method. Comput Biol Med 2017;1(85):1–6.
  • [254] Bano S, Vasconcelos F, Vander Poorten E, Vercauteren T, Ourselin S, Deprest J, et al. FetNet: a recurrent convolutional network for occlusion identification in fetoscopic videos. Int J Comput Assist Radiol Surg 2020 May;15(5):791–801.
  • [255] O. Chapelle, B. Schölkopf and A. Zien, Semi-Supervised Learning, London, U.K.:MIT Press, 2006.
  • [256] M. S. Aydemir and G. Bilgin, ‘‘Graph-based semi-supervised learning with GPU on small sample sized hyperspectral images”, Proc. 25th Signal Process. Commun. Appl. Conf., pp. 1-4, May 2017.
  • [257] Filipovych R, Davatzikos C. Alzheimer’s Disease Neuroimaging Initiative. Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI). NeuroImage 2011;55 (3):1109–19.
  • [258] Batmanghelich KN, Dong HY, Pohl KM, Taskar B, Davatzikos C. Disease classification and prediction via semi-supervised dimensionality reduction. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2011 Mar 30 (pp. 1086-1090). IEEE.
  • [259] Al Ghamdi M, Li M, Abdel-Mottaleb M, Abou Shousha M. Semi-supervised transfer learning for convolutional neural networks for glaucoma detection. InICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019 May 12 (pp. 3812-3816). IEEE.
  • [260] Wang B, Prastawa M, Saha A, Awate SP, Irimia A, Chambers MC, Vespa PM, Van Horn JD, Pascucci V, Gerig G. Modeling 4D changes in pathological anatomy using domain adaptation: Analysis of TBI imaging using a tumor database. In International Workshop on Multimodal Brain Image Analysis 2013 Sep 22 (pp. 31-39). Springer, Cham.
  • [261] Heimann T, Mountney P, John M, Ionasec R. Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data. Med Image Anal 2014;18(8):1320–8.
  • [262] Cheplygina V, Pena IP, Pedersen JH, Lynch DA, Sørensen L, de Bruijne M. Transfer learning for multicenter classification of chronic obstructive pulmonary disease. IEEE J Biomed Health Inf 2017;22(5):1486–96.
  • [263] Van Opbroek A, Vernooij MW, Ikram MA, de Bruijne M. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners. Med Image Anal 2015;24(1):245–54.
  • [264] Xie X, Niu J, Liu X, Chen Z, Tang S, Yu S. A survey on incorporating domain knowledge into deep learning for medical image analysis. Med Image Anal 2021;101985.
  • [265] Wang Y, Nazir S, Shafiq M. An overview on analyzing deep learning and transfer learning approaches for health monitoring. Comput Math Methods Med 2021;24:2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-add576ce-59e4-4af8-a112-8ffa9c264b5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.