PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical Assessment of the Biodegradability of Agricultural Nonwovens Made of PLA

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena fizykochemiczna biodegradowalności agrowłóknin wytworzonych z PLA
Języki publikacji
EN
Abstrakty
EN
Compostable biodegradable plastics are an ecological alternative to traditional products based on petroleum derivatives, whose post-use waste may pollute the natural environment. Modern polymer materials show the functional properties of plastics obtained by conventional methods, but they also may be degraded as a result of biochemical transformations in composting. This allows such materials to be included in the scheme of the currently implemented circular economy, which does not generate post-consumer waste. This paper presents methods for the assessment of the biodegradation process of selected agricultural nonwovens produced from commercial PLA 6252D polylactide, supplied by Nature Works® LLC, USA. The agricultural nonwovens tested, obtained by the spun-bond technique, were characterised by different degrees of crystallinity in the range from 11.1% to 31.4%. Biodegradation tests were carried out as simulated aerobic composting while maintaining constant environmental conditions in accordance with test procedures based on PN-EN/ISO standards using the method of sample mass loss determination. Gel chromatography (GPC/SEC) and FTIR spectroscopy were also applied to assess the degree of biodegradation. The aim of this study was to evaluate the effect of the crystallinity of nonwoven made of PLA 6252 D on its degradation in a compost environment.
PL
Kompostowalne tworzywa biodegradowalne są ekologiczną alternatywą dla tradycyjnych produktów opartych na pochodnych ropy naftowej, zalegających i zanieczyszczających środowisko naturalne w formie odpadów poużytkowych. Nowoczesne materiały polimerowe wykazują właściwości użytkowe tworzyw sztucznych otrzymywanych metodami konwencjonalnymi a ponadto ulegają utylizacji na drodze przemian biochemicznych w wyniku kompostowania. Pozwala to na wpisanie się takich materiałów w schemat obecnie pożądanej gospodarki cyrkularnej, która nie generuje odpadów poużytkowych. W niniejszej pracy przedstawiono metody badań biorozkładu wybranych agrowłóknin wytworzonych z komercyjnego polilaktydu PLA 6252D firmy Nature Works® LLC, USA. Badane agrowłókniny otrzymane techniką spun-bonded charakteryzowały się różnymi stopniami krystaliczności w zakresie od 11.1% do 31.4%. Badania biodegradacyjnie prowadzono w procesie symulowanego kompostowania aerobowego z zachowaniem stałych warunków środowiskowych zgodnie z procedurami badawczymi na podstawie norm PN-EN/ISO z wykorzystaniem metody wyznaczania ubytku masy. Do oceny stopnia biodegradacji zastosowano również technikę chromatografii żelowej (GPC/SEC) oraz spektrofotometrię FTIR. Celem pracy było określenie wpływu krystaliczności włóknin wytworzonych z PLA 6252 D na rozkład w środowisku kompostowym.
Rocznik
Strony
26--34
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Institute of Biopolymers and Chemical Fibres, 19/27 M. Skłodowskiej-Curie, 90-570 Łódź, Poland
  • Łukasiewicz Research Network– Institute of Biopolymers and Chemical Fibres, 19/27 M. Skłodowskiej-Curie, 90-570 Łódź, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, 116 Żeromskiego, 90-924 Łódź, Poland
  • Łukasiewicz Research Network – Institute of Biopolymers and Chemical Fibres, 19/27 M. Skłodowskiej-Curie, 90-570 Łódź, Poland
Bibliografia
  • 1. Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of the Regions. A European Strategy for Plastics in a Circular Economy. Brussels,(16.01.2018) COM(2018) 28 final: EUROPEAN COMMISSION.
  • 2. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2019; 58: 50-62.
  • 3. Owczarek M, Szkopiecka M, Jagodzińska S, Dymel M, Kudra M, Gzyra-Jagieła K, Miros-Kudra P. Biodegradable Nonwoven of an Aliphatic-Aromatic Copolyester with an Active Cosmetic Layer. FIBRES & TEXTILES in Eastern Europe 2019; 27, 6(138): 102-109. DOI: 10.5604/01.3001.0013.4475.
  • 4. Majka T M, Majka M. Plastic Waste as New and Cheap Components used for the Production of Polymer Nanocomposites. Cracow University of Technology, State Higher Vocational School in Tarnów, 1-15. (in Polish).
  • 5. Scott G. “Green” polymers. Polymer Degradation and Stability 2000; 68(1): 1-7.
  • 6. Kobayashi S. Green Polymer Chemistry: New Methods of Polymer Synthesis Using Renewable Starting Materials. Structural Chemistry 2017; 28: 461-474.
  • 7. Nowak B, Pajak J. Biodegradation of polylactide (PLA). Archives of Waste Management and Environmental Protection 2010; 12( 2): 1-10. ISSN 1733-4381 (in Polish).
  • 8. Penczek S, Pretula J, Lewiński P. Polymers from Renewable Raw Materials, Polymers Biodegradable. Polimery 2013; 58: 833-958 (in Polish).
  • 9. Malinowski R. Bioplastics as New Environmentally Friendly Materials. Inżynieria i Ochrona Środowiska 2015; 18(2): 215-231 (in Polish).
  • 10. Bobek B, Smyłła A, Rychter P, Biczak R, Kowalczuk M. Degradation of Selected Polyesters in Soil with the Participation of Microorganisms. Proceedings of ECOpole 2009: 3(1).
  • 11. Reddy MM, Vivekanandhana S, Misra M, Bhatia SK, Mohanty AK. Biobased Plastics and Bionanocomposites: Current Status and Future Opportunities. Progress in Polymer Science 2013; 38: 1653-1689.
  • 12. Alvarado N, et al. Supercritical Impregnation of Thymol in Poly(Lactic Acid) Filled with Electrospun Poly(Vinyl Alcohol)-Cellulose Nanocrystals Nanofibers: Development An Active Food Packaging Material. Journal of Food Engineering 2018; 217.
  • 13. Sülar V, Devrim G. Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses. FIBRES & TEXTILES in Eastern Europe 2019; 27, 1(133): 100-111. DOI: 10.5604/01.3001.0012.7751.
  • 14. Rocha DB, Souza de Carvalho J, Aparecida de Oliveira S, Santos Rosa D. A New Approach for Flexible PBAT/PLA/Caco3 Films into Agriculture. Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018; 135, 46660.
  • 15. Moraczewski K, Stepczyńska M, Malinowski R, Tracz A, Żenkiewicz M. Impact of Corona Discharges on the Surface Structure of Polylactide Intended for Autocatalytic Metallization, Polymer Materials. POMERANIA-PLAST 2013, 91.
  • 16. Gutowska A, Jóźwicka J, Sobczak S, Tomaszewski W, Sulak K, Miros P, Owczarek M, Szalczyńska M, Ciechańska D, Krucińska I. In-Compost Biodegradation of PLA Nonwovens. FIBRES & TEXTILES in Eastern Europe 2014; 22, 5(107): 99-106.
  • 17. Shankara S, Wangb L-F, Rhima J.W, Incorporation of Zinc Oxide Nanoparticles Improved the Mechanical, Water Vapor Barrier, UV-Light Barrier, and Antibacterial Properties of PLA-Based Nanocomposite Films. Materials Science & Engineering C 2018; 93: 289-298.
  • 18. PN-EN 14045: 2005. Packaging – Evaluation of the disintegration of packaging materials in practical orient testes under defined composting conditions. (in Polish).
  • 19. Siwek P, Libik A, Twarowska-Shmidt K, Ciechańska D, Gryza I. The use of Biopolymers in Agriculture. Polimery 2010; 55: 11-12 (in Polish).
  • 20. Foltynowicz Z, Jakubiak P. Poly (Lactic Acid) – A Biodegradable Polymer Obtained from Vegetable Raw Materials.Polimery 2002; 47: 11-12 (in Polish).
  • 21. Marasovic P, Kopitar D. Overview and Perspective of Nonwoven Agrotextile. TEXT LEATH REV 2019; 2 (1): 32-45.
  • 22. Anders D, Nowak L. Assessment of the Composting Process with Animal Waste. PAN Cracow 2008; 9: 35-46 (in Polish).
  • 23. Ozimek A, Kopeć M. Assessment of Biomass Biological Activity at Various Stages of the Composting Process Using the Oxitop Control Measuring System. Acta Agrophysica 2012; 19(2): 379-390.
  • 24. Żuchowska D, Steller R, Meissner W. Polymer Composites Susceptible to (Bio) Degradation. Polimery 2007; 52 (7-8): 524-526.
  • 25. Elsawy MA, Kim KH, Park JW, Deep A. Hydrolytic Degradation of Polylactic Acid (PLA) and its Composites. Renewable and Sustainable Energy Reviews 2017; 79: 1346-1352.
  • 26. Panyachanakul T, Sorachart B, Saisamorn L, Wanlapa L, Kitpreechavanich V, Krajangsang S. Development of biodegradation process for Poly(DL-lactic acid) degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1. Electronic Journal of Biotechnology 2019; 40: 52-57.
  • 27. Krasowska K, Heimowska A, Rutkowska M. Enzymatic and Hydrolytic Degradation of Pol (Caprolactone) in Natural Conditions. Polimery 2006; 51(1): 21-25 (in Polish).
  • 28. PN-EN 14806: 2010. Packaging – Preliminary Evaluation of the Disintergration of Packaging Materials under Simulated Composting Conditions in a Laboratory Scale Test. (in Polish).
  • 29. PN-EN: 2005. Plastics – Determination of the Degree of Disintegration of Plastics Materials Under Simulated Composting Conditions in a Laboratory – Scale Test (ISO 20200:2004). (in Polish).
  • 30. Test procedure No. 15 Determination of the Total Number of Microorganisms in Compost and Soil (in Polish).
  • 31. PN-EN ISO 4833:2004. Food and Feed Microbiology – Horizontal Method for Determining the Number of Microorganisms – Plate Method At 30 °C. (in Polish).
  • 32. PN-ISO 7218:2008. Food and Feed Microbiology – General Requirements and Principles of Microbiological Tests. (in Polish).
  • 33. Łobużek S, Nowak B, Pająk J, Rymarz G. Extracellular Depolymerase Activity Secreted by the Gliocladium Solani Strain in the Course of Degradation of the Polyester „BIONOLLE”. Polimery 2008; 53(6): 465 (in Polish).
  • 34. PN-EN 29073-3:1994. Textiles – Test Method for Nonwovens – Determination of Tensile Strength and Elongation.
  • 35. PN-EN ISO 9073-4:2002. Textiles – Methods for Testing Nonwovens – Part 4 : Determination of Tear Strength.
  • 36. PN-EN 29073-1:1994. Textiles – Test Methods For Nonwovens – Part 1: Determination of Mass Per Unit Area.
  • 37. PN-EN ISO 9073-2:2002. Test Methods for Nonwovens – Part 2: Determination of Thickness.
  • 38. PN-86/P-04761/08. MBSW. Chemical fibres. Determination of the diameter (in Polish).
  • 39. Kurata M, Tsunashima Y. Viscosity-Molecular Weight Relationship and Unperturbed Dimensions of Linear Chain Molecules. Polymer Handbook.
  • 40. Dorgman J, Janzen J, Knauss D, Hait SB, Limoges BR, Hutchinson MH. Fundamental Solution and Single-Chain Properties of Polylactides. J. Polym. Sci. Part B: Polymer Physics 2005; 43: 3100-3111.
  • 41. Ji-Dong Gu. Microbiological Deterioration and Degradation of Synthetic Polymeric. ELSEVIER International Biodeterioration & Biodegradation 2003; 52: 69-91.
  • 42. Karamanlioglu M, Robson GD. The Influence of Biotic and Abiotic Factors on the Rate of Degradation of Poly(Lactic) Acid (PLA) Coupons Buried in Compost and Soil. Polymer Degradation and Stability 2013; 98: 2063-2071.
  • 43. Sülar V, Devrim G. Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses. FIBRES & TEXTILES in Eastern Europe 2019; 27, 1(133): 100-111. DOI: 10.5604/01.3001.0012.7751.
  • 44. Fukushima K, Giménez E, Cabedo L, Lagarón M, Feijoo JL. Biotic Degradation of Poly(DL-Lactide) Based Nanocomposites. Polymer Degradation and Stability 2012; 97: 1278-1284.
  • 45. Kalita NK, Nagar M, Mudenur NC, Kalamdhad A, Katiyar V. Biodegradation of Modified Poly(Lactic Acid) Based Biocomposite Films under Thermophilic Composting Conditions. Polymer Testing 2019; 76: 522-536.
  • 46. Sedničková M, Pekařová S, Kucharczyk P, Bočkaj J, Janigová,I, Kleinová A, Jochec-Mošková D, Omaníková L, Perďochová D, Koutný M, Sedlařík V, Alexy P, Chodák I. Changes of Physical Properties of PLA-Based Blends During Early Stage of Biodegradation In Compost. International Journal of Biological Macromolecules 2018; 113: 434-442.
  • 47. Mustapa Izan R, Shanks RA, and Ing Kong. Poly(lactic acid)-Hemp-Nanosilica Hybrid Composites: Thermomechanical, Thermal Behavior and Morphological Properties. International Journal of Advanced Science and Engineering Technology 2013; 3, 1: 192-199.
  • 48. Aslan S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C. Poly (D,L-Lactic Acid)/Poly (∈-Caprolactone) Blend Membranes: Preparation and Morphological Characterization. Journal of Materials Science 2000; 35: 1615-1622.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-add0b64f-b487-4b50-86a3-7d17a0e892a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.