PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the polarity effect of Roos parallel plate ionization chamber in build-up region

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Despite widespread studying of the polarity effect of Roos parallel plate ion chamber in electron beams as mentioned in several protocols, no investigations have up till now studied this effect in photon beams in the build-up region. It is important to examine its polarity effect in the build-up region for photon beams, so this is the first work that focuses in to evaluate the polarity effect of the Roos chamber in the surface and build-up region and comparing its effect with other chambers. Methods: In this study, the Roos chamber was irradiated by a Theratron 780E60Co beam to a known polarity effect. The Polarity effects of 5×5 up to 35×35 cm2 field sizes at positive and negative polarizing voltages were measured in the build-up region from surface to 0.7 cm in a solid water phantom. Results: The polarity ratios (PRs) were obtained at 1.020 ± 0.00 and 1.015 ± 0.00 for field sizes 5 × 5 up to 35 × 35 cm2, respectively. For the same fields, the percentage of polarity effects (%PEs) was obtained at 1.99% ± 0.00% and 1.47% ± 0.02%, respectively. The results found that the %PEs decrease with increased field sizes and depths. Moreover, the %PEs exhibited a decrease with an increased percentage surface dose (%SD). The uncertainty of %PE was estimated as 0.01% for all measurements in this study. Conclusions: As a result, the average %PE of the Roos chamber described here is equal to 0.756% ± 0.013% for all depths and field sizes for the 60Co γ-ray beam. It has introduced a less percentage of polarity effect than other chambers.
Słowa kluczowe
Rocznik
Strony
127--132
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Physics Department, Sana'a University, Sana’a, Yemen
Bibliografia
  • 1. Schulz RJ, Almond PR, Cunningham JC, et al. A protocol for the determination of absorbed dose from high-energy photon and electron beams (AAPM TG-21). Med Phys. 1983;10(3):741-771. https://doi.org/10.1118/1.595446
  • 2. Khan F M, Doppke K P, Hogstrom K R, et al. Clinical electron-beam dosimetry. (AAPM TG-25). Med Phys. 1991;18(1):73-109. https://doi.org/10.1118/1.596695
  • 3. International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. Technical Reports Series No. 398. Vienna; 2000
  • 4. International Atomic Energy Agency. The use of plane-parallel ionization chambers in high-energy electron and photon beams: An international code of practice for dosimetry. Technical Reports Series No. 381. Vienna; 1995
  • 5. Wickman G, Holmstrom T. Polarity effect in plane-parallel ionization chambers using air or a dielectric liquid as ionization medium. Med Phys. 1992;19(3):637-640. https://doi.org/10.1118/1.596934
  • 6. Ramsey CR, Spencer KM, Oliver AL. Ionization chamber, electrometer, linear accelerator, field size, and energy dependence of the polarity effect in electron dosimetry. Med Phys. 1999;26(2):214-219. https://doi.org/10.1118/1.598507
  • 7. Gerbi BJ, Khan FM. The polarity effect for commercially available plane-parallel ionization chambers. Med Phys. 1987;14(2):210-215. https://doi.org/10.1118/1.596072
  • 8. Gerbi BJ. The response characteristics of a newly designed plane-parallel ionization chamber in high-energy photon and electron beams. Med Phys. 1993;20(5):1411-1415. https://doi.org/10.1118/1.597105
  • 9. Kubo H. Evaluations of two solid water parallel plate chambers in high-energy photon and electron beams. Med Phys. 1993;20(2):341-345. https://doi.org/10.1118/1.597074
  • 10. Aget H, Rosenwald JC. Polarity effect for various ionization chambers with multiple irradiation conditions in electron beams. Med. Phys. 1991;18(1): 67-72. https://doi.org/10.1118/1.596694
  • 11. De Souza CN, Caldas LVE, Sibata CH, et al. Two new parallel-plate ionization chambers for electron beam dosimetry. Radiation Measurements. 1996;26:65-74. https://doi.org/10.1016/1350-4487(95)00254-5
  • 12. McEwen MR, Williams AJ, DuSautoy AR. Determination of absorbed dose calibration factors for therapy level electron beam ionization chambers. Phys Med Biol. 2001;46(3):741755. https://doi.org/10.1088/0031-9155/46/3/310
  • 13. Pearce J, Thomas R, DuSautoy A. The characterization of the Advanced Markus ionization chamber for use in reference electron dosimetry in the UK. Phys Med Biol. 2006;51(3):473–83. https://doi.org/10.1088/0031-9155/51/3/001
  • 14. Ogata1 T, Uehara1 K, Nakayama1 M. et al. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers. Radiol Phys Technol. 2016; 9(2):187192. https://doi.org/10.1007/s12194-016-0348-3
  • 15. Butson MJ, Yu PKN, Cheung T. Polarity effect on surface dose measurement for an Attix parallel plate ionization chamber. Australas Phys Eng Sci Med. 2003;26(2):84-86. https://doi.org/10.1007/BF03178463
  • 16. Kron T, McNiven A, Witruk B, et al. An experimental study of recombination and polarity effect in a set of customized plane paralel ionization chambers. Australas Phys Eng Sci Med. 2006;29(4):291-299. https://doi.org/10.1007/BF03178393
  • 17. Miller JR, Hooten BD, Micka JA, et al. Polarity effects and apparent ion recombination in microionization chambers. Med Phys. 2016;43(5):2141-2152. https://doi.org/10.1118/1.4944872
  • 18. Tessier F, Hooten BD, McEwen MR. Zero-shift thimble ionization chamber. Med Phys. 2010;37(3): 1161-1163. https://doi.org/10.1118/1.3314072
  • 19. Martin-Martin G, Aguila PB, Barbés B, et al. Assessment of ion recombination correction and polarity effects for specific ionization chambers in flattening-filter-free photon beams. Physica Medica. 2019;67:176-184. https://doi.org/10.1016/j.ejmp.2019.07.018
  • 20. Physikalisch-Technische-Werkstatten,. Detectors Detectors for Ionizing Radiation Including Codes of Practice. www.ptw.de
  • 21. Dusautoy A, Roos M, Svensson H, et al. Review of data and methods recommended in the international code of practice for dosimetry IAEA TRS 381, the use of plane parallel ionization chambers in high energy electron and photon beams: IAEA TDS 1173. Vienna: International Atomic Energy Agency; 2000
  • 22. Nilson B, Montelius A. Fluence perturbation in photon beams under nonequilibrium conditions. Med Phys. 1986;13(2):191-195. https://doi.org/10.1118/1.595895
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adce1b07-9b58-4f7a-b80e-e2e14802a776
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.