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Jerk is the time derivative of an acceleration vector and, hence, the third time derivative of
the position vector. In this paper, we consider a particle moving in the three dimensional
Euclidean space and resolve its jerk vector along the tangential direction, radial direction in
the osculating plane and the other radial direction in the rectifying plane. Also, the case for
planar motion in space is given as a corollary. Furthermore, motion of an electron under a
constant magnetic field and motion of a particle along a logarithmic spiral curve are given as
illustrative examples. The aforementioned decomposition is a new contribution to the field
and it may be useful in some specific applications that may be considered in the future.

Keywords: jerk, kinematics of a particle, plane and space curves

1. Introduction

In Newtonian physics, the force acting on the particle is related to its acceleration through
F = ma. The jerk J is the time derivative of the acceleration. Therefore, if the mass is constant,
we have J = (1/m)dF /dt. If the time derivative of the force is nonzero, we have a nonzero jerk
vector. The time derivative of the force may be nonzero even if it does not depend on time
explicitly, e.g. the force in a simple harmonic oscillator F = —kr.

The concepts of the jerk and jerk vector were proved to be useful in many areas, especially
in motion control and mechanics. For example, “the jerk, as a predictor of large accelerations of
short duration, has important practical engineering applications in the design of intermittent-
-motion mechanisms such as cams and genevas (Bickford, 1972; Faires, 1965; Freudenstein and
Sandor, 1964)” (Schot, 1978). In the applications such as gymnastics, railways and streetcar
design, the physiological aspects of the jerk that is felt were investigated in the work (Melchior,
1928).

For a particle moving along a curve in the 3D Euclidean space, decomposition of the accele-
ration vector along the tangential and normal components is known in the literature. However,
in the situation that the angular momentum is constant, the decomposition (which is considered
by Siacci (1879)) of the acceleration vector along the tangential and radial components is more
beneficial than the aforementioned decomposition. In Siacci’s study, a component of acceleration
lies along the tangent to the path while the other one is directed from the particle towards the
foot of the perpendicular that is from an arbitrary fixed origin to the instantaneous osculating
plane to the path (Casey, 2011). Later on, Casey studied Siacci’s resolution of the acceleration
vector in space which is equipped with the Serret-Frenet frame (Casey, 2011). Inspired by Siac-
ci’s and Casey’s studies, in the present paper we obtain a new resolution of the jerk vector for
the aforementioned particle.
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This paper is organized as follows. In Section 2, the Serret-Frenet frame of a curve has been
reviewed to disambiguate the ensuing Sections. Also, some necessary knowledge on the jerk
vector of a particle moving along a space curve, and backgrounds on motion of this particle
have been recalled. In Section 3, we have obtained a new resolution of the jerk vector for the
aforementioned particle. There exist three components of the jerk vector in our resolution. One
component lies along the tangent line of the path, the second and the third component lie along
the lines which pass through the particle and the foots of the perpendiculars that are from
the origin of the space to the instantaneous osculating plane and rectifying plane, respectively.
Additionally, we have discussed the planar case in the space as a corollary. In Section 4, we
have given illustrative examples for our resolution. Finally, in Section 5 we conclude the results
obtained in our paper.

2. Preliminaries

Let the 3-dimensional Euclidean space E? be equipped with the standard inner product
<A, B> = a1by + agby + asbs (2.1)

where A = [a1,az,a3], B = [by, by, b3] are arbitrary vectors in E3. The norm of the vector
A € B3 is expressed by |A| = (A, A)/2. A curve a = a(s) : I € R — E? is a unit speed curve
if |&/(s)] = 1 for every s € I. Then, s is called the arc-length parameter of the curve «(s).

Let us denote by {T(s),N(s),B(s)} the moving Serret-Frenet frame along the unit speed
curve «(s). T(s), N(s) and B(s) are called the tangent, principal normal and binormal vectors,
respectively. They can be defined as follows

T(s) = o/(s) N(s) = 2 0) B(s) = T(s) x N(s) (2.2)
N o”(s)] N '
On the other hand, the derivative formulas of Serret-Frenet frame in the matrix form are given
by

T/(s) 0 k(s) 0 | [T(s)
N'(s)| = |—r(s) 0  7(s)| |N(s) (2.3)
B'(s) 0 —7(s) 0 B(s)

where the functions «(s), 7(s) are defined as follows

r(s) = |T'(s)] 7(s) = —(B'(s), N(s)) (2.4)

and also called as the curvature and the torsion of the curve a(s), respectively (Shifrin, 2015).

Take into consideration a particle whose mass is m and which moves in E3 under the influence
of arbitrary forces. Choose an arbitrary fixed origin O in the space and denote by x the position
vector of P at time t. Let the curve C, parameterized by the arc-length parameter s, be the
oriented curve traced out by P. Here, the arc-length of C corresponds to the time t. In this case,
the unit tangent vector of the curve C' can be written as

_dx
 ds
With the aid of (2.3) and (2.5), the velocity vector v and the acceleration vector a of P at the

time t are given as follows

oo dx_ds
Cdt dt
dv d%s ds\ 2
= — =—_T )N
AT T e +’i<dt)

(2.5)

(2.6)
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Thus, the jerk vector (derivative of acceleration with respect to time) is obtained after some
calculations as (see Tsirlin (2017) for more details)

3 2
- T I () &

)

1

Fig. 1. A particle P moves on a curve C in the 3D Euclidean space E®. 71 and my are the osculating
and rectifying planes at P, respectively. B is the foot of the perpendicular line segment which is from
the origin O to plane 7. Y is the foot of the perpendicular line segment which is from the origin to
plane my. BZ and Y K are perpendicular line segments to the tangent and binormal axes, respectively.
r and r* are the position vectors of P relative to B and Y. e, is the unit vector in the direction of BP
and e,« is the unit vector in the direction of Y P

A particle moving along a space curve may be seen as a point of this curve. So, the aforemen-
tioned particle P has a position vector in terms of the Serret-Frenet basis of the aforementioned
curve C'. Let the position vector of P on the Serret-Frenet basis be resolved as follows

x =qT — pN + bB (2.8)
where
q=(x,T) —p=(x,N) b= (x,B) (2.9)
Denote by r the vector
(2.10)

r = —pN + ¢T
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which lies in the osculating plane m; to C' at P. Then, the equality
r? = (r,r) = p* +¢* (2.11)

is obtained where r is length of the vector r (see Fig.1).
Also, the angular momentum of the particle P about O is obtained by vector multiplication
of the position vector of P and the linear momentum vector of P as

d d d
Cr = mEIN+ mEpB (2.12)

Ho:(qT—pN+bB)xmdt o o

On the other hand, on the physical assumption that the binormal component of the angular
momentum is nonzero, it is ensured that p never vanishes. So, from the perspective of (2.11),
r is nonzero. In this case, the equalities

1
e =T (2.13)
and
1
N = ];(—reT +4¢T) (2.14)

can be written where e, is the unit vector in the direction of the radial vector r (see Casey
(2011) for more details).

3. An alternative resolution of the jerk vector for a space curve
Let us define a vector r* in the rectifying plane w5 to C' at P by
r* =¢T +bB (3.1)
Then we get the equality (see Fig.1)
()2 = (1, x7) = 2 + b (3.2)

where r* is length of the vector r*.

We aim to resolve the jerk vector J in (2.7) along the tangential direction, radial direction BP
in the osculating plane m; and the radial direction Y P in the rectifying plane mo. We know that
the normal vector N is expressed in terms of e, and T as in (2.14) on the physical assumption
that the binormal component of angular momentum is nonzero. We will make use of this relation
to realize our aim in the next step. But now, let us try to express the vector B in terms of r*
and T. In view of (3.1), we can conclude that this is possible if and only if b # 0. By making the
second physical assumption that the normal component of angular momentum never vanishes,
we can ensure that b is nonzero. By considering this assumption, we can write the equation

B = %(—qT—i—r*) (3.3)

While b # 0, it can be immediately seen from (3.2) that r* # 0. So the unit vector e, can be
defined by

. = Ly (3.4)
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With the aid of (3.3) and (3.4), we get
1
B = E(—qT + r¥ep) (3.5)

Now, if we substitute equations (2.14) and (3.5) into equation (2.7), we obtain the jerk
vector J of the particle P as follows

1= (G (@) vt o (@) ()

dt3 dt "pdtdiz T pds \dt
rds d?s Td_n<d5)3}e { T*(ds

) (3.6)
Ii]—)aﬁ —Eds E RT— —) :|er* :TtT+Trer+Tr*er*

* [_3 b \dt
on the physical assumption that each of the normal and binormal components of its angular
momentum vector never vanishes.

In general, the unit vectors T, e, and e, do not constitute an orthonormal set. So, the three
components of J in (3.6) are not equal to the orthogonal projections of J onto T, e, and e,«. We
call T3, T, T, the tangential, first radial and second radial components of the jerk, respectively.
By taking into account of the above derivation, we can express the following theorem.

Theorem 3.1. Let a particle P of mass m travel along a curve C in 3D Euclidean space E>,
and assume that each of the normal and binormal components of its angular momentum
vector never vanishes. In this case, the jerk vector of P can be expressed as in equation
(3.6). In here Ty, T, T« are the tangential, first radial and second radial components of
the jerk, respectively. Ty lies along the tangent line of C'. T} lies along the line which passes
through the particle P and the foot of the perpendicular that is from the origin of the space
to the osculating plane, while T+ lies along the line which passes through the particle P
and the foot of the perpendicular that is from the origin of the space to the rectifying plane.

Corollary 3.1. Let the motion of P be restricted to a fixed plane and assume that the binormal
component of its angular momentum vector never vanishes. Then, the jerk vector of P is
expressed as in the following

d? ds\3 ds d? dr /dsy3
J= [E:_lg(d_i) +3/€;€9d—j%§+%d—§(d—j> }T
rdsd?s rdk/ds\3
%Eﬁ_fgﬂ(ﬁ> }e’"

(3.7)
+|-3

Proof. In the 3-dimensional Euclidean space E3, let the oriented curve C, traced out by partic-
le P be restricted to a fixed plane which does not contain the origin O. We know that in the
planar case 7 = 0, B is constant and orthogonal to the plane. Also, since the plane does not
pass through O, b is a non-zero constant. If equations (2.8) (2.10), (2.13), (3.1) and (3.4) are
considered, the position vector of P is given by

x =re, +bB = —pN + r¥e, (3.8)

Now, (3.6) holds in the plane of motion. If we take into consideration 7 = 0, from (3.6), we
obtain

T; &_K2(§)3 ?mg@& qd/ﬁ(ds):i

_ adr ds 3.9
dt3 dt pdtdt?  pds\dt (3:9)

and also we conclude that 7, does not change and T+ vanishes. It means that the jerk vector is
expressed as in equation (3.7) for the fixed plane which does not contain the origin O.
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In the second part of the proof, we consider a plane that passes through the origin. In the
space E3, let the oriented curve C, traced out by the particle P, be restricted to a fixed plane
which contains the origin O. Similarly 7 = 0, B is constant and orthogonal to the plane. Also,
since the plane passes through O, b = 0. Thus each of the statements

—%K(S)T(S)(%)B (3.10)
and
T—;K(S)T(s)(%f (3.11)

have indefiniteness 0/0. So, we will examine this motion in the limit case. The plane of motion
in £ passes through the origin if and only if b = 0. For this reason, assume that b — 0. Then,
the distance between the foot of the perpendicular that is from the origin to the rectifying plane
and the line which is determined by the binormal vector is about to become equal to the distance
between the foot of the perpendicular, which is from the origin to the rectifying plane and the
particle. It means that r*/q — 1 (or 7* =~ ¢). Also for b — 0, Y K is about to coincide with Y P:
that is the vector T is about to coincide with the vector e, (see Fig. 2).

)

1

Fig. 2. A particle P moves on a curve C' which is in a fixed plane, containing the origin O of the 3D
Euclidean space E® (this plane is the osculating plane of C' according to the theory of differential
geometry). The osculating and rectifying planes of the curve C' at P are denoted by 7 and o,
respectively. OY is perpendicular to the tangent axis. Y P is the perpendicular to the binormal axis.
r and r* are the position vectors of P relative to O and Y. e, and e~ are the unit vectors in the
directions OP and Y P, respectively

Consequently, for b — 0, we can say that the vector

—m’% (%)3T + FLT% (%)3%* (3.12)
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is about to coincide with the zero vector. Thus, by considering (3.6), we can conclude that the
jerk vector is expressed as in equation (3.7) for the fixed plane which contains the origin O, as
well. 0

4. Tllustrative examples

In this Section, we give illustrative examples to calculate the components of jerk according to
Theorem 3.1 and Corollary 3.1.
4.1. Motion of an electron along a right-handed circular helix

Assume that an electron travels along a right-handed circular helix lying on a cylinder which
has radius R. This is motion of an electron (with electrical charge —e, and mass m) under a
constant magnetic field (0,0, B) along the z-axis. In Cartesian coordinates, the position vector
of the electron is given as follows

x = [Rcos(wt), Rsin(wt), v,t] (4.1)

where w = eB/m and R, v, are positive constants (see Fig.3).

Fig. 3. The right-handed circular helix on a cylinder as the path of an electron under a constant
magnetic field. The electron is denoted by the letter P

Let the helix axis be the z-axis, and « be the helix angle determined by tan o« = Rw/v,. The
velocity, acceleration and jerk vector of the electron can be obtained as

[—Rw sin(wt), Rw cos(wt), v,]
[— Rw? cos(wt), — Rw? sin(wt), 0] (4.2)
[Rw? sin(wt), — Rw? cos(wt), 0]

v
a
J
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We can immediately write the following
dx = —Rwsin(wt)dt dy = Rw cos(wt)dt dz = v,dt (4.3)

Using (ds)? = (dz)? + (dy)? + (dz)?, the speed of electron and its first and second derivatives
can be found as follows

ds d?s d3s
_ 2.2 2 — Rl
7 \ REw® + vz 72 0 e 0 (4.4)

As can be seen easily, the oriented curve traced out by the electron can be parameterized by
the arc-length s = s(t) = Bt where 8 = /R?*w? + v2 as in the following

ws . WS U8

~(s) = |Rcos —, Rsin —, —

) [ g g B }

Also, if we use equations (2.2) and (4.5) while keeping the equality tan @ = Rw/v, in mind, we
can easily find the Serret-Frenet basis as in the following

(4.5)

. . ws ws
T = {—smasm F,smacos F,cosa}

(4.6)

N = {—cos%,—sin%,()}

. ws ws .
B = {COSO(SIH F,-COSO(COS F,sma}

On the other hand, from (2.4) it is easy to see that the curvature x and the torsion 7 are
constants

. R _ sin? o S vy fw W cos? a (47)
R? +v2/w? R R? +v2/w? v,
From (2.9), (4.5) and (4.6)
q:w:tvzcosa p=R b:w:tvzsina (4.8)
B g
Thus from (2.11) and (3.2), the following equalities can be written
B ,  svicos?a S 20 o . SUz
T = R-f—T—\/R +t’UZCOSC¥ T —F—tvz (49)
Consequently, for the aforementioned electron, the components of the jerk vector are found
as
_R25% — w202
T,=_0Y — Y% T, =0 Ty = w?v, (4.10)

NI

by applying Theorem 3.1.
4.2. Motion of a particle along a logarithmic spiral curve
Let a particle P move on the logarithmic spiral curve
5(t) = [e" cos(wt), e sin(wt), 0]
in the 3D Euclidean space E3. In this case, the position vector of P is given as

x = [e“! cos(wt), e" sin(wt), 0] (4.11)
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where w indicates the angular frequency and t indicates time. The position vector x is given in
the MKS unit system. The velocity, acceleration and jerk vectors related to the particle P have
been obtained as follows

v = wle“! cos(wt) — e sin(wt), e*" sin(wt) + e cos(wt), 0]
a = 2w?[—e“tsin(wt), et cos(wt), 0] (4.12)
J = 20— sin(wt) — e cos(wt), e cos(wt) — ! sin(wt), 0]
The equalities
dr = we” (cos(wt) — sin(wt))dt dy = we*" (sin(wt) + cos(wt))dt (4.13)

can be easily written. In this case, we get the speed of P and its first and second derivatives as

% = V2we*t — = V2wt — = Vouwdet (4.14)

dt2 dt3
by means of the equality (ds)? = (dz)? + (dy)? + (dz)?.

Fig. 4. An illustration of the logarithmic spiral. The radial direction is log-scaled. In this plot w = 1 and
0 <t < 8w in MKS unit system

As can be seen easily, the oriented curve traced out by the particle can be parameterized by
the arc-length s = s(t) = v/2e** — /2 as in the following

5 (s) = (% + 1) {COS ln(% + 1),sinln(% + 1),0} (4.15)

Moreover, if we use equations (2.2) and (4.15), we can easily find the elements of the Serret-
-Frenet basis

[COSID( ) — sinln(% + 1),005111(% + 1) + sinln(% + 1),0}

[ cosln(—+ )_Sinln(i+1),cosln(i+1)—sinln(i_yl),o} (4.16)

N 72 72 v
B

B%\

Since the motion is planar, we know that 7 = 0. On the other hand, from equation (2.4), it is
easy to see that the curvature is equal to 1/(s + v/2). From (2.9), (2.11), (4.15) and (4.16) we
obtain

s+ V2 s+v2 (4.17)

r =
2 V2
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Consequently, the jerk vector is obtained for the particle P in the tangential and radial
components as

J = (2V2u3e“Y) T + (—4w’e“t)e, (4.18)

by applying Corollary 3.1.

5. Conclusion

Along a space curve in the 3-dimensional Euclidean space, the resolution of the jerk vector (time
derivative of acceleration vector) is well known thanks to ref. (Résal, 1862). In this resolution,
the jerk vector lies along the tangential, normal and binormal components.

In this paper, a new resolution of the jerk vector for a particle which moves on a space
curve in 3-dimensional Euclidean space is obtained. Our resolution comprises the tangential and
radial components in the osculating plane and the radial component in the rectifying plane.
Additionally, the case for planar motion is discussed as a corollary.

This resolution is a new contribution to the field. Just like in the case of Siacci’s resolution of
the acceleration vector which comprises the tangential and radial component in the osculating
plane, in the future, it may be needed for some specific applications in many areas of science.
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