Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The integration of optical fibre communication with multiple input multiple output-non-orthogonal multiple access (MIMO-NOMA) waveforms in cognitive radio (CR) systems is examined in this study. The proposed system leverages the advantages of optical fibre, including high bandwidth and immunity to electromagnetic interference to facilitate the transmission and reception of MIMO-NOMA signals in a CR environment. Moreover, MIMO-NOMA signal was detected and analysed by the hybrid-discrete cosine transform-Welch (H-DCT-W) method. Based on the modes results, a detection probability greater than 0.96%, a false alarm probability equal to 0.06, and a global system error probability equal to 0.09% were obtained with a signal-to-noise ratio (SNR) less than 0 dB, while maintaining a simple level of complexity. The results obtained in this paper indicate the potential of the optical fibre-based MIMO-NOMA system based on H-DCT-W technology in CR networks. Therefore, its suitability for practical CR applications is demonstrated by the improvements obtained in false alarms, detection probability, and error rates at low levels of SNR. This study contributes to the development of efficient and reliable wireless communication systems by linking cooperation and synergy concerning MIMO-NOMA, optical fibres, as well as the proposed detection technique (H-DCT-W).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e149181
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- Department of Medical Device Technology Engineering at Future University, Babylon, Iraq
autor
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
Bibliografia
- [1] Asgarirad, M., Jahromi, M. N. & Dana, A. Techno-economic model of fibre-to-the-home as 5G fronthaul: Evaluation of capital expenditures. IET Commun. 14, 4075-4080 (2020). https://doi.org/10.1049/iet-com.2020.0228.
- [2] Aladeloba, A. O., Phillips, A. F. & Woolfson, M. S. Performance evaluation of optically preamplified digital pulse position modu-lation turbulent free-space optical communication systems. IET Optoelectron. 6, 66-74 (2012). https://doi.org/10.1049/iet-opt.2011.0029.
- [3] Kang, J. M., Kim, T.-Y., Choi, I. H., Lee, S.-H. & Han, S.-K. Self-seeded reflective semiconductor optical amplifier based optical transmitter for up-stream WDM-PON link. IET Optoelectron. 1, 77-81 (2007). https://doi.org/10.1049/iet-opt:20050116.
- [4] Grosso, G. & Höök, A. High bit rate characteristics of short pump pulses generated by stimulated Brillouin scattering in optical fibres. Electron. Lett. 29, 281-283 (1993). https://doi.org/10.1049/el:19930192.
- [5] Shen, Ch. Experiences and Future Perspective of China Telecom on Optical Access Networks. in 2017 Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (OSA, 2017).
- [6] Soni, G. A performance analysis of free-space optical link at 1,550 nm, 850 nm, 650 nm and 532 nm optical wavelengths. J. Opt. Commun. 39, 335-341 (2018). https://doi.org/10.1515/joc-2016-0118.
- [7] Kaur, S. & Kakati, A. Analysis of free space optics link performance considering the effect of different weather conditions and modulation formats for terrestrial communication. J. Opt. Commun. 41, 463-468 (2020). https://doi.org/10.1515/joc-2018-0010.
- [8] Salwa, M., Abd El-Naser, A. M., Abd El-Sami, F. E. & Rahed, A. N. Z. Performance evaluation of SAC-OCDMA system in free space optics and optical fiber system based on different types of codes. Wirel. Pers. Commun. 96, 2843-2861 (2017). https://doi.org/10.1007/s11277-017-4327-8.
- [9] Gopal, R. Diversity Architectures for High Data Rate Ground-toSatellite Optical and EHF Links. in 36th International Communications Satellite Systems Conference (ICSSC) 23 (IEEE, 2018). https://doi.org/10.1049/cp.2018.1704.
- [10] Matera, F. et al. Optical Network Slicing Approaches with Carrier Ethernet Tests. in 19th Italian National Conference on Photonic Technologies (Fotonica) 10 (IEEE, 2017). https://doi.org/10.1049/cp.2017.0185.
- [11] Schrenk B. Milovancev, D. Vokic, N., Hübel, H. & Karinou, F. Radio-over-air with a face-to-face EML transceiver pair. in 45th European Conference on Optical Communication (ECOC) 4 (IEEE, 2019). https://doi.org/10.1049/cp.2019.0863.
- [12] Oda, S., Sunnerud, H. & Andrekson, P. A. High efficiency and high output power fiber optic parametric amplifier. Opt. Lett. 32, 1776-1778 (2007). https://doi.org/10.1364/OL.32.001776.
- [13] Wang, Ch. et al. A broadband gold-coated photonic crystal fiber polarization filter with a high loss ratio of both polarizations at 1550 and 1310 nm. Photonics 8, 488 (2021). https://doi.org/10.3390/photonics8110488.
- [14] Raza, R. & Hayat, S. H. Design and study of an optical fiber digital transmitter. Inf. Technol. J. 5, 433-438 (2006). https://doi.org/10.3923/itj.2006.433.438.
- [15] Al-amaireh, H. & Kollar, Z. Reducing the Complexity of FS-FBMC Receivers Using Hopping DFT. in 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA) 1-5 (IEEE, 2019). https://doi.org/10.1109/RADIOELEK.2019.8733498.
- [16] Pereira, L. A. M. et al. Implementation of a multiband 5G NR fiber-wireless system using analog radio over fiber technology. Opt. Commun. 474, 126112 (2020). https://doi.org/10.1016/j.optcom.2020.126112.
- [17] Guillory, J. et al. Radio over Fiber Tunnel for 60 GHz Wireless Home Network. in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference OWT6 (OSA, 2011). https://doi.org/10.1364/OFC.2011.OWT6.
- [18] Hadi, M. U. & Murtaza, G. Fibre wireless distributed antenna systems for 5G and 6G services. Electronics 12, 64 (2023). https://doi.org/10.3390/electronics12010064.
- [19] Alimi, I. et al. A review of self-coherent optical transceivers: fundamental issues, recent advances, and research directions. Appl. Sci. 11, 7554 (2021). https://doi.org/10.3390/app11167554.
- [20] Jinno, M., Takara, H., Sone, Y., Yonenaga, K. & Hirano, A. Multiflow optical transponder for efficient multilayer optical networking. IEEE Commun. Mag. 50, 56-65 2012. https://doi.org/10.1109/MCOM.2012.6194383.
- [21] Karar, A. S., El Falou, A. R., Barakat, J. M. H., Gürkan, Z. N. & Zhong, K. Recent advances in coherent optical communications for short-reach: Phase retrieval methods. Photonics 10, 308 (2023). https://doi.org/10.3390/photonics10030308.
- [22] Jeong, H.-S., Cho, J.-H. & Sung, H.-K. Evaluation of performance enhancement of optical multi-level modulation based on direct modulation of optically injection-locked semiconductor lasers. Photonics 8, 130 (2021). https://doi.org/10.3390/photonics8040130.
- [23] Xia, L. et al. Transfer learning assisted deep neural network for OSNR estimation. Opt. Express 27, 19398-19406 (2019). https://doi.org/10.1364/OE.27.019398.
- [24] Algriree, W. et al. An analysis of 5G-MIMO communication system based SS for centralized cooperative and non-cooperative users. Egypt. Inform. J. 24, 161-172. (2023). https://doi.org/10.1016/j.eij.2023.02.003.
- [25] Algriree, W. et al. A CR-5G network based on multi-user for various waveforms detection. Egypt. Inform. J. 23, 517-527 (2022). https://doi.org/10.1016/j.eij.2022.05.004.
- [26] Liu, Y. et al. SNR model of optical fiber acoustic sensing system based on F-P structure. Photonics 10, 676 (2023). https://doi.org/10.3390/photonics10060676.
- [27] Paredes-Páliz, D. et al. Radio over fiber: An alternative broadband network technology for IoT. Electronics 9, 1785 (2020). https://doi.org/10.3390/electronics9111785.
- [28] Vallejo. L. et al. Usability of a 5G fronthaul based on a DML and external modulation for M-QAM transmission over photonically generated 40 GHz. IEEE Access 8, 223730-223742 (2020). https://doi.org/10.1109/ACCESS.2020.3042756.
- [29] Van, D., Rimal, B. P., Maier, M. & Valcarenghi, L. PECO-FiWi: An energy conservation scheme for integrated fiber-wireless access networks. IEEE Trans. Wirel. Commun. 15, 3979-3994 (2016). https://doi.org/10.1109/twc.2016.2531694.
- [30] Tang, Z., Zhang, F. & Pan, S. 60-GHz RoF System for dispersion-free transmission of HD and multi-band 16QAM. IEEE Photon. Technol. Lett. 30, 1305-1308 (2018). https://doi.org/10.1109/lpt.2018.2845672.
- [31] Wang, D. et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express 25, 17150-17166 (2017). https://doi.org/10.1364/oe.25.017150.
- [32] Kim, H., Park, Y., Kim, J. & Hong, D. A low-complex SVD-based F-OFDM. IEEE Trans. Wirel. Commun. 19, 1373-1385 (2020). https://doi.org/10.1109/TWC.2019.2953540.
- [33] Bendimerad, Y. & Bendimerad, F. T. Low complexity MIMO-RB-F-OFDM systems using antenna selection technique. IET Commun. 14, 152-157 (2020). https://doi.org/10.1049/iet-com.2019.0322.
- [34] Dhua, S., Arjun, R., Appaiah, K. & Gadre, V. M. Complexity FBMC with Filtered OFDM for 5G Wireless Systems. in International Conference on Signal Processing and Communications (SPCOM) 1-5 (IEEE, 2020). https://doi.org/10.1109/SPCOM50965.2020.9179614.
- [35] Guo, Z. Liu, Q., Zhang, W. & Wang, S. Low complexity implementation of universal filtered multi-carrier transmitter. IEEE Access 8, 24799-24807 (2020). https://doi.org/10.1109/ACCESS.2020.2970727.
- [36] Fathy, S. A. Ibrahim, M., El-Agooz, S. & El-Hennawy, H. Low-complexity SLM PAPR reduction approach for UFMC systems. IEEE Access 8, 68021-68029 (2020). https://doi.org/10.1109/ACCESS.2020.2982646.
- [37] Martínez, D. M. & Andrade, A. G. Performance evaluation of Welch's periodogram-based energy detection for spectrum sensing. IET Commun. 7, 1117-1125 (2013). https://doi.org.10.1049/iet-com.2012.0640.
- [38] Elkourdi, M., Peköz, B., Güvenkaya, E. & Arslan, H. Waveform Design Principles for 5G and Beyond. in IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON) 1-6 (IEEE, 2016). https://doi.org/10.1109/WAMICON.2016.7483859.
- [39] Abdoli, J., Jia, M. & Ma, M. OFDM: A New Waveform For Future Wireless Systems. in IEEE, 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 66-70 (IEEE, 2015). https://doi.org/10.1109/SPAWC.2015.7227001.
- [40] Wild, T., Schaich, F. & Chen, Y. 5G Air Interface Design Based on Universal Filtered (UF-) OFDM. in IEEE, 19th International Conference on Digital Signal Processing 699-704 (IEEE, 2014). https://doi.org/10.1109/ICDSP.2014.6900754.
- [41] Schellmann, M. et al. FBMC-Based Radio Interface for 5G Mobile Networks: Challenges and Proposed Solutions. in 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications 1-6 (IEEE, 2014). https://doi.org/10.4108/icst.crowncom.2014.255708.
- [42] Jang, W. M. Simultaneous power harvesting and cyclostationary spectrum sensing in cognitive radios. IEEE Access 8, 56333-56345 (2020). https://doi.org/10.1109/access.2020.2981878.
- [43] Liu, X., Jia, M., Na, Z., Lu, W. & Li, F. Multi-modal cooperative spectrum sensing based on Dempster-Shafer fusion in 5G-based cognitive radio. IEEE Access 6, 199-208 (2018). https://doi.org/10.1109/access.2017.2761910.
- [44] Chu, G., Niu, K., Wu, W. & Yang, F. MGF-based analysis of spectrum sensing over K−μ fading channels for 5G cognitive networks. IEEE Access 6, 78650-78658 (2018). https://doi.org/10.1109/access.2018.2885132.
- [45] El-Alfi N. A., Abdel-Atty, H. M. & Mohamed, M. A. Sub-Nyquist cyclostationary detection of GFDM for wideband spectrum sensing. IEEE Access 7, 86403-86411 (2019). https://doi.org/10.1109/access.2019.2925047.
- [46] Bao J. et al. Improved blind spectrum sensing by covariance matrix Cholesky decomposition and RBF-SVM decision classification at low SNRs. IEEE Access 7, 97117-97129 (2019). https://doi.org/10.1109/access.2019.2929316.
- [47] Hu, F., Chen, B. & Zhu, K. Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access 6, 15754-15776 (2018). https://doi.org/10.1109/access.2018.2802450.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adca28bb-3f81-4a67-b3ff-5451ad1ef3df