PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of metal addition of Cu, Ni, and Fe on swelling Zeolit Alam Lampung (ZAL) to present amphoteric features on Cu-Ni-Fe/ZAL swelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main challenge in using Zeolit Alam Lampung (ZAL) as a catalyst lies in controlling its acidic nature which is influenced by the content of alkali metals, alkaline earth metals, transition metals, and Si/Al ratio. Controlling by reducing and adding metals with higher acidity is necessary. This research involved two stages: ZAL Swelling formation followed by adding Cu, Ni, and Fe metals to make a Cu-Ni-Fe/ZAL Swelling catalyst. The acid distribution analysis using the NH3-TPD profile test showed that the Cu-Ni-Fe/ZAL swelling catalyst exhibited higher Lewis-type acidity and more uniform distribution compared to Brønsted acid. The addition of Cu, Ni, and Fe metals can modify the acidity strength of ZAL Swelling to form Cu-Ni-Fe/ZAL Swelling catalysts with Lewis and Brønsted sites at lower temperatures (120–550 °C) compared to ZAL Swelling (120–750 °C). This gives an idea about the optimization of the arrangement of Lewis and Bronsted acid sites to present amphoteric features.
Rocznik
Strony
8--16
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wz.
Twórcy
  • Department of Doctoral Engineering, Faculty of Engineering, Sriwijaya University, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Sriwijaya University, Indonesia
autor
  • Department of Doctoral Engineering, Faculty of Engineering, Sriwijaya University, Indonesia
  • Department of Doctoral Engineering, Faculty of Engineering, Sriwijaya University, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Sriwijaya University, Indonesia
autor
  • Department of Doctoral Engineering, Faculty of Engineering, Sriwijaya University, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Sriwijaya University, Indonesia
Bibliografia
  • 1. Minceva, M., Fajgar, R., Markovska, L., Meshko, V. (2008). Comparative Study of Zn2+, Cd2+, and Pb2+ Removal From Water Solution Using Natural Clinoptilolitic Zeolite and Commercial Granulated Activated Carbon. Equilibrium of Adsorption. Separ. Sci. Technol. Pap. 43(8), 2117–43. DOI: 10.1080/01496390801941174.
  • 2. Król, M. (2020). Natural vs. Synthetic Zeolites. Crystals. DOI: 10.3390/cryst10070622.
  • 3. Muzwar, K., Hidajat, W., Winarno, T. (2018). Genesis dan Karakteristik Endapan Zeolit Desa Hargomulyo dan Sekitarnya, Kecamatan Gedangsari, Gunung Kidul, Daerah Istimewa Yogyakarta. J. Geosains Dan Teknologi. Pap. 1, 19. DOI: 10.14710/jgt.1.1.2018.19-24.
  • 4. Razzak, M., Las, T., Priyambodo, P. (2013). The Characterization of Indonesian’s Natural Zeolite For Water Filtration System. J. Kimia VALENSI. Pap. 3. DOI: 10.15408/jkv.v3i2.518.
  • 5. Syafriadi., Marhamah, S., Al Muttaqii, M. (2021). PENGARUH VARIASI KONSENTRASI NaOH PADA ZEOLIT ALAM LAMPUNG TERHADAP PRODUK SILIKA. J. Riset Teknologi Ind. Pap. 15, 393–402.
  • 6. Khivantsev, K., Gramatikov, S., Jaegers, N., Derewinski, M., Vayssilov, G., Szanyi, J., Aleksandrov, H. (2022). Direct observation of a new aluminum Lewis acid site in a zeolite.
  • 7. Johnson, B., Iorio, J., Roman-Leshkov, Y. (2021). Identification and quantification of distinct active sites in Hf-Beta zeolites for transfer hydrogenation catalysis. J. Catalysis. Pap. 404. DOI: 10.1016/j.jcat.2021.10.026.
  • 8. Ates, A. (2019). The modification of aluminium content of natural zeolites with different composition. Powder Technol. Pap. 344. DOI: 10.1016/j.powtec.2018.12.018.
  • 9. Lusardi, M., Davis, M. (2019). Investigation of the active Bronsted acid site for the DME carbonylation reaction in chabazite-type zeolites.
  • 10. Kong, H.-Y., Chen, H.-D., Yu, R., Zhang, W.-P. (2021). A Combination of DFT and Solid-state NMR Study on the Relationship between Framework Al Distribution and Bronsted Acidity in SSZ-39 Zeolite. J. Molec. Catal. Pap. 35, 215–25. DOI: 10.16084/j.issn1001-3555.2021.03.002.
  • 11. Zhang, L., Ma, X., Zheng, J., Liu, Y., Qin, B., Du, Y. (2022). Active Zn Species Nest in Dealumination Zeolite Composite for Propane Dehydrogenation. Catal. Letters. DOI: 10.1007/s10562-022-04244-4.
  • 12. Sasongko, S., Anggoro, D.D., Buchori, L., Febrianto, R., Siagian, E. (2020). The effect of dealumination process on zeolite Y acidity and morphology. vol. 2197.
  • 13. Wang, S., He, Y., Jiao, W., Wang, J., Fan, W. (2019). Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework. Current Opinion Chem. Engin. DOI: 10.1016/j.coche.2019.04.002.
  • 14. Palčić, A., Valtchev, V. (2020). Analysis and control of acid sites in zeolites. Appl. Catal. A: General. DOI: 10.1016/j.apcata.2020.117795.
  • 15. Boronat, M., Corma, A. (2015). Factors Controlling the Acidity of Zeolites. Catal. Letters. Pap. 145(1), 162–72. DOI: 10.1007/s10562-014-1438-7.
  • 16. Mondal, P., Hazarika, K.K., Deka, A., Deka, R.C. (2008). Density functional studies on Lewis acidity of alkaline earth metal exchanged faujasite zeolite. Molec. Simulation. Pap. 34(10–15), 1121–8. DOI: 10.1080/08927020802073032.
  • 17. Huang, M., Kaliaguine, S. (1992). Lewis acid and Lewis basic Sites in Alkali-exchanged Zeolites - characterization and catalytic activity. In: Smith, K.J., Sanford, E.C.B.T.-S. in S.S. and C., editors. Progress in Catalysis, vol. 73. Elsevier p. 291–300.
  • 18. Chalupka, K., Sadek, R., Valentin, L., Millot, Y., Calers, C., Nowosielska, M., Rynkowski, J., Dzwigaj, S. (2018). Dealuminated Beta Zeolite Modified by Alkaline Earth Metals. J. Chem. Pap. 2018, 7071524. DOI: 10.1155/2018/7071524.
  • 19. Li, X., Dong, W., Zhang, J., Shao, S., Cai, Y. (2020). Preparation of bio-oil derived from catalytic upgrading of biomass vacuum pyrolysis vapor over metal-loaded HZSM-5 zeolites. J. Energy Instit. Pap. 93(2). DOI: 10.1016/j.joei.2019.06.005.
  • 20. Zhang, R., Zou, R., Li, W., Chang, Y., Fan, X. (2022). On understanding the sequential post-synthetic microwave-assisted dealumination and alkaline treatment of Y zeolite. Microp. Mesop. Mater. Pap. 333, 111736. DOI: 10.1016/j.micro-meso.2022.111736.
  • 21. Yang, F., Fu, J., Mo, J., Xiuyang, L. (2013). Synergy of Lewis and Brønsted Acids on Catalytic Hydrothermal Decomposition of Hexose to Levulinic Acid. Energy & Fuels. Pap. 27, 6973–6978. DOI: 10.1021/ef401560v.
  • 22. Songtawee, S., Rungtaweevoranit, B., Klaysom, C., Faungnawakij, K. (2021). Tuning Brønsted and Lewis acidity on phosphated titanium dioxides for efficient conversion of glucose to 5-hydroxymethylfurfural. RSC Advances. Pap. 11(47), 29196–206. DOI: 10.1039/D1RA06002C.
  • 23. Vosmerikova, L.N., Matieva, Z.M., Snatenkova, Y.M., Kolesnichenko, N.V., Zaikovskii, V.I., Vosmerikov, A.V. (2022). Conversion of dimethyl ether to liquid hydrocarbons over Zn--isomorphously substituted HZSM-5. Fuel. Pap. 320, 123959. DOI: 10.1016/J.FUEL.2022.123959.
  • 24. Liu, M., Jia, S., Li, C., Zhang, A., Song, C., Guo, X. (2014). Facile preparation of Sn-β zeolites by post-synthesis (isomorphous substitution) method for isomerization of glucose to fructose. Chin. J. Catal. Pap. 35(5), 723–32. DOI: 10.1016/S1872-2067(14)60071-1.
  • 25. Yue, Q., Zhang, J., Shamzhy, M., Opanasenko, M. (2019). Seeded growth of isomorphously substituted chabazites in proton-form. Microp. Mesop. Mater. Pap. 280, 331–6. DOI: 10.1016/J.MICROMESO.2019.02.017.
  • 26. Gackowski, M., Datka, J. (2020). Acid properties of hierarchical zeolites Y. Molecules. DOI: 10.3390/molecules25051044.
  • 27. Zheng, Y., Li, D., Wang, J., Lyu, B., Long, B., Ding, Z., Zheng, Z. (2021). Production of bio-aromatic by catalytic biomass pyrolysis over metal modified biomass-derived biochar-based catalyst. Nongye Gongcheng Xuebao/Transactions of the Chinese Soc. Agric. Engin. Pap. 37(5), 231–40. DOI: 10.11975/j.issn.1002-6819.2021.05.027.
  • 28. Darmansyah, D., Ginting, S., Iryani, D., Sari, R., Supriyadi, D. (2021). Characterization of Modified Lampung Natural Zeolite with Cetyl Trimethyl Ammonium Bromide (CTAB) for Adsorption Industrial Tapioca Wastewater.
  • 29. Ginting, S., Yulia, Y., Wardono, H., Darmansyah, D., Hanif, M., Iryani, D. (2019). Synthesis and Characterization of Zeolite Lynde Type A (LTA): Effect of Aging Time. J. Physics: Conf. Series. Pap. 1376, 12041. DOI: 10.1088/1742-6596/1376/1/012041.
  • 30. Sáez Del Bosque, I.F., Martínez-Ramírez, S., Blanco--Varela, M.T. (2014). FTIR study of the effect of temperature and nanosilica on the nano structure of C–S–H gel formed by hydrating tricalcium silicate. Constr. Building Mater. Pap. 52, 314–23. DOI: 10.1016/J.CONBUILDMAT.2013.10.056.
  • 31. Xu, S., Wang, Q., Wang, N., Song, Q., Li, Y. (2022). Effects of natural zeolite replacement on the properties of superhydrophobic mortar. Constr. Building Mater. Pap. 348, 128567. DOI: 10.1016/J.CONBUILDMAT.2022.128567.
  • 32. Al-Oweini, R., El-Rassy, H. (2009). Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Molec. Struct. Pap. 919(1–3), 140–5. DOI: 10.1016/J.MOLSTRUC.2008.08.025.
  • 33. Król, M., Jeleń, P. (2021). The Effect of Heat Treatment on the Structure of Zeolite A. Mater. Pap. 14, 4642. DOI: 10.3390/ma14164642.
  • 34. Ellerbrock, R., Stein, M., Schaller, J. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Reports. Pap. 12(1), 11708. DOI: 10.1038/s41598-022-15882-4.
  • 35. Ke, G., Shen, H., Yang, P. (2019). Synthesis of X-Zeolite from Waste Basalt Powder and its Influencing Factors and Synthesis Mechanism. Materials. DOI: 10.3390/ma12233895.
  • 36. Elaiopoulos, K., Perraki, T., Grigoropoulou, E. (2010). Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Microp. Mesop. Mater. Pap. 134(1–3), 29–43. DOI: 10.1016/J.MICROMESO.2010.05.004.
  • 37. Ünveren, E., Gündüz, G., Cakicioğlu–Özkan, F. (2005). Isomerization of Alpha-pinene Over Acid Treated Natural Zeolite. Chem. Engin. Commun. Pap. 192(3), 386–404. DOI: 10.1080/00986440590477773.
  • 38. Ates, A., Hardacre, C. (2012). The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments. J. Colloid Interf. Sci. Pap. 372(1), 130–40. DOI: 10.1016/J.JCIS.2012.01.017.
  • 39. Beyer, H. (2002). Dealumination Techniques for Zeolites. Mol. Sieves, Pap. 3, 203–55.
  • 40. Wang, C., Leng, S., Guo, H., Yu, J., Li, W., Cao, L., Huang, J. (2019). Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment. Appl. Surf. Sci. Pap. 498, 143874. DOI: 10.1016/J.APSUSC.2019.143874.
  • 41. Burris, L.E., Juenger, M.C.G. (2016). The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials. Cement Conc. Res. Pap. 79, 185–93. DOI: 10.1016/J.CEMCONRES.2015.08.007.
  • 42. Tang, G., Li, Y., Wang, Y., Chai, Y., Liu, C. (2022). A review on the synthesis, structural modification and application of two-dimensional MFI zeolite. J. Porous Mater. Pap. 29(6), 1649–66. DOI: 10.1007/s10934-022-01304-3.
  • 43. Bruckner, R., Harmata, M. (2010). Substitution Reactions on Aromatic Compounds BT - Organic Mechanisms: Reactions, Stereochemistry and Synthesis. Berlin, Heidelberg: Springer Berlin Heidelberg p. 201–57.
  • 44. O’Neill, M.E., Wade, K. (1982). 1 - Structural and Bonding Relationships among Main Group Organometallic Compounds. In: Wilkinson, G., Stone, F.G.A., Abel, E.W.B.T.-C.O.C., editors. Oxford: Pergamon p. 1–42.
  • 45. Chen, R., Li, L. (2001). Reactions of atomic transition-metal ions with long-chain alkanes. J. Amer. Soc. Mass Spec-trom. Pap. 12(4), 367–75. DOI: 10.1016/S1044-0305(01)00217-3.
  • 46. Armentrout, P.B., Beauchamp, J.L. (1989). The chemistry of atomic transition-metal ions: insight into fundamental aspects of organometallic chemistry. Accounts of Chemical Research. Pap. 22(9), 315–21. DOI: 10.1021/ar00165a004.
  • 47. Jørgensen, K.A. (1991). A Review of: “Bonding Energetics in Organometallic Compounds. Edited by Tobin J. Marks. ACS Symposium Series No. 428, American Chemical Society, Washington, DC, 1990, xi + 305pp., $ 64.95. ISBN 0-8412-1791-2.” Sulfur Reports. Pap. 11(1) 201–2. DOI: 10.1080/01961779108048769.
  • 48. Shui, H., Xu, H., Zhou, Y., Shui, T., Pan, C., Wang, Z. (2017). Study on hydro-liquefaction kinetics of thermal dissolution soluble fraction from Shenfu sub-bituminous coal. Fuel. Pap. 200, 576–82. DOI: 10.1016/J.FUEL.2017.03.048.
  • 49. Yoshioka, T., Iyoki, K., Hotta, Y., Kamimura, Y., Yamada, H., Han, Q. (2023). Dealumination of small-pore zeolites through pore-opening migration process with the aid of pore-filler stabilization. Sci. Adv. Pap. 8(25) eabo3093. DOI: 10.1126/sciadv.abo3093.
  • 50. Shiraishi, S. (2003). Electric Double Layer Capacitors. Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology. Pap. 447–57. DOI: 10.1016/B978-008044163-4/50027-9.
  • 51. Leong, J., Seo, Y., Chu, S.-H., Park, C., Jeon, E.J., Cho, S.-W. (2018). Pore Diameter of Mesoporous Silica Modulates Oxidation of H2O2-Sensing Chromophore in a Porous Matrix. Langmuir. Pap. 34(38), 11242–11252. DOI: 10.1021/acs.langmuir.8b00957.
  • 52. Al-Ghouti, M.A., Da’ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. Pap. 393, 122383. DOI: 10.1016/J.JHAZMAT.2020.122383.
  • 53. Musyoka, N.M., Petrik, L.F., Hums, E., Kuhnt, A., Schwieger, W. (2015). Thermal stability studies of zeolites A and X synthesized from South African coal fly ash. Res. Chem. Intermed. Pap. 41(2), 575–82. DOI: 10.1007/s11164-013-1211-3.
  • 54. Usachev, N., Belanova, E., Krukovsky, I., Kanaev, S., Atal”yan, O., Kazakov, A. (2003). Thermal transformations in systems based on zeolites Y, X, and A containing zinc and sodium nitrates. Russian Chemical Bulletin - RUSS CHEM BULL. Pap. 52, 1940–9. DOI: 10.1023/B:RUCB.0000009636.89718.56.
  • 55. Cruciani, G. (2006). Zeolites upon heating: Factors governing their thermal stability and structural changes. J. Phys. Chem. Solids. Pap. 67(9–10), 1973–94. DOI: 10.1016/J.JPCS.2006.05.057.
  • 56. Fermoso, J., Hernando, H., Jana, P., Moreno, I., Přech, J., Ochoa-Hernández, C. (2016). Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catal. Today. Pap. 277, 171–81. DOI: 10.1016/j.cattod.2015.12.009.
  • 57. Chen, H., Wang, M., Yang, M., Shang, W., Yang, C., Liu, B., Hao, Q., Zhang, J., Ma, X. (2019). Organosilane surfactant--directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance. J. Mater. Sci. Pap. 54. DOI: 10.1007/s10853-019-03485-w.
  • 58. Ma, T., Imai, H., Yamawaki, M., Terasaka, K., Li, X. (2014). Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide. Catal. Pap. 4, 116–28. DOI: 10.3390/catal4020116.
  • 59. Dugkhuntod, P., Imyen, T., Wannapakdee, W., Yutthalekha, T., Salakhum, S., Wattanakit, C. (2019). Synthesis of hierarchical ZSM-12 nanolayers for levulinic acid esterification with ethanol to ethyl levulinate. RSC Advances. Pap. 9, 18087–97. DOI: 10.1039/C9RA03213D.
  • 60. Damjanović, L., Auroux, A. (2009). Determination of Acid/Base Properties by Temperature Programmed Desorption (TPD) and Adsorption Calorimetry BT – Zeolite Characterization and Catalysis: A Tutorial. In: Chester, A.W., Derouane, E.G., editors. Dordrecht: Springer Netherlands Pap. 107–67.
  • 61. Lilic, A., Wei, T., Bennici, S., Devaux, J.-F., Dubois, J.-L., Auroux, A. (2017). A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production. ChemSusChem. Pap. 10. DOI: 10.1002/cssc.201701040.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adc6d96d-124b-41f0-aff6-4be8e120559f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.