PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of growth kinetics and size dependent structural, morphological, optical characteristics of sol-gel derived silica nanoparticles in silica matrix

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanocomposite silica thin films made using the sol-gel method were studied. The nano-silica films were prepared using a mixture of tetraethyl orthosilicate (TEOS), deionized water, ethanol, and ammonia solution. To control the growth of the particles inside the film, the nanocomposite silica film was prepared using a mixture of the nano-silica sol and the silica sol. The change in the particle size with the heat treatment temperature ranging from 450 °C to 1100 °C was investigated. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), NKD (refractive index-N, extinction coefficient-K, and thickness-D) and ultraviolet-visible (UV-Vis) spectrophotometry were used for characterization purposes. The XRD studies showed that the nano-silica thin films were amorphous at all annealing temperatures except for 1100 °C. The α-cristobalite crystal structure formed at the annealing temperature of 1100 °C. Optical parameters, such as refractive indices and extinction coefficients, were obtained using the NKD analyzer with respect to the annealing temperature of the films. The activation energy and enthalpy of the nanocomposite silica film were evaluated as 22.3 kJ/mol and 14.7 kJ/mol, respectively. The cut-off wavelength values were calculated by means of extrapolation of the absorbance spectra estimated using the UV-Vis spectroscopy measurements. A red shift in the absorption threshold of the nanocomposite silica films indicated that the size of the silica nanoparticles increased with an increase of the annealing temperatures from 450 °C to 900 °C, and this confirms the quantum confinement effect in the nanoparticles.
Wydawca
Rocznik
Strony
16--24
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Kadir Has University, Faculty of Engineering and Natural Sciences, Cibali, Fatih, Istanbul 34083, Turkey
  • Istanbul Technical University, Department of Physics Engineering, Faculty of Science and Letters, Maslak, Istanbul, Turkey
  • Istanbul Technical University, Department of Physics Engineering, Faculty of Science and Letters, Maslak, Istanbul, Turkey
Bibliografia
  • [1] VOGEL R., SURAWSKI P.P.T., LITTLETON B.N., MILLER C.R., LAWRIE G.A., BATTERSBY B.J., TRAU M., J. Colloid. Interf. Sci., 310 (2007), 144.
  • [2] GURAV J. L., NADARGI D. Y., RAO A. V., Appl. Surf. Sci., 255 (2008), 3019.
  • [3] SAYGIN HINCZEWSKI D., HINCZEWSKI M., TEPEHAN F.Z., TEPEHAN G.G., Sol. Energ. Mat. Sol. C., 87 (2005), 181.
  • [4] SCHULER A., DUTTA D., CHAMBRIER E., ROECKER C., TEMMERMAN G., OELHAFEN P., SCARTEZZINI J.-L., Sol. Energ. Mat. Sol. C., 90 (2006), 2894.
  • [5] DUBEY R. S., RAJESH Y. B. R. D., MORE M. A., Mater. Today-Proc., 2 (2015), 3575.
  • [6] VASILIU I., GARTNER M., ANASTASESCU M., TODAN L., PREDOANA˘ L., ELI ¸SA M., NEGRILA˘ C., UNGUREANU F., LOGOFATU ˘ C., MOLDOVAN A., BÎRJEGA R., ZAHARESCU M., Thin Solid Films, 515, 16 (2007), 6601.
  • [7] PREDOANA L., PREDA S., ANASTASESCU M., STOICA M., VOICESCU M., MUNTEANU C., TOMESCU R., CRISTEA D., Opt. Mater., 46 (2015), 481.
  • [8] ISLAM S., BIDIN N., RIAZ S., NASEEM S., MARSIN F.M., Sensor Actuat. B-Chem., 225 (2016), 66.
  • [9] AKKAYA ARIER Ü. Ö., Optik, 127 (2016), 6439.
  • [10] ALI A. M., HARRAZ F. A., ISMAIL A. A., AL-SAYARI S.A., ALGARNI H., AL-SEHEMI A. G., Thin Solid Films, 605 (2016), 277.
  • [11] TABATABAEI S., SHUKOHFAR A., AGHABABAZADEH R., MIRHABIBI A., J. Phys., 26 (2006), 371.
  • [12] WANG C.T., WU C.L., CHEN I.C., HUANG Y.H., Sensor Actuat. B-Chem., 107 (2005), 402.
  • [13] STÖBER W., FINK A., BOHN E., J. Colloid. Interf. Sci., 26 (1968), 62.
  • [14] HUANG Y., PEMBERTON J. E., Colloid. Surface. A, 377 (2011), 76.
  • [15] JUNG I.K., GURAV J. L., HA T.J, CHOI S.G., BAEK S., PARK H.H., Ceram. Int., 38 (2012), 105.
  • [16] BREDERECK K., EFFENBERGER F., TRETTER M., J. Colloid. Interf. Sci., 360 (2011), 408.
  • [17] COSTA C.A.R., VALADARES L.F., GALEMBECK F., Colloid. Surface. A, 302 (2007), 371.
  • [18] XU G.Q., ZHENG Z.X., TANG W.M., WU Y.C., J. Lumin., 126 (2007), 43.
  • [19] RAHMAN I.A., VEJAYAKUMARAN P., SIPAUT C.S., ISMAIL J., CHEE C.K., Ceram. Int., 34 (2008), 2059.
  • [20] KIM J. M., CHANG S. M., KONG S. M., KIM K.S., KIM J., KIM W.S., Ceram. Int., 35 (2009), 1015.
  • [21] BAE G.Y., MIN B.G., JEONG Y.G., LEE S.C., JANG J.H., KOO G.H., J. Colloid. Interf. Sci., 337 (2009), 170.
  • [22] ANASTASESCU C., ANASTASESCU M., TEODORESCU V.S., GARTNER M., ZAHARESCU M., J. Non-Cryst. Solids, 356 (2010), 2634.
  • [23] WANG X.D., SHEN Z.X., SANG T., CHENG X.B., LI M., FCHEN L.Y., WANG Z.S., J. Colloid. Interf. Sci., 341 (2010), 23.
  • [24] PARK S. K., KIM K. D., KIM H. T., Colloid. Surface. A, 197 (2002), 7.
  • [25] MARINI M., POURABBAS B., PILATI F., FABBRI P., Colloid. Surface. A, 317 (2008), 473.
  • [26] MORALES-SAAVEDRA O. G., ZANELLA R., Mater. Chem. Phys., 124 (2010), 816.
  • [27] BLUTE I., PUGH R. J., PAS J. V., CALLAGHAN I., Colloid. Surface. A, 337 (2009), 127.
  • [28] DU H., HAMILTON P. D., REILLY M. A., D’AVIGNON A., BISWAS P., RAVI N., J. Colloid. Interf. Sci., 340 (2009), 202.
  • [29] HARANATH D., GANDHI N., SAHAI S., SHANKER M. H. V., Chem. Phys. Lett., 496 (2010), 100.
  • [30] SHENA J., WANGA J., ZHOUA B., DENGA Z., WENGA Z., ZHUB L., ZHAOB L., LIB Y., J. Non-Cryst. Solids, 225 (1998), 315.
  • [31] SAYGIN HINCZEWSKI D., HINCZEWSKI M., SORAR ˙I., TEPEHAN F.Z., TEPEHAN G.G., Sol. Energ. Mat. Sol. C., 92 (2008), 821.
  • [32] KOC K., TEPEHAN F.Z., TEPEHAN G.G., J. Mater. Sci., 40 (2005), 1363.
  • [33] SORAR I., SAYGIN-HINCZEWSKI D., HINCZEWSKI M., TEPEHAN F.Z., Appl. Surf. Sci., 257 (2011), 7343.
  • [34] ÖZUGUR ˘ UYSAL B., TEPEHAN F. Z., J. Sol-Gel Sci. Techn., 63 (2012), 177.
  • [35] BATTISHA I.K., AFIFY H.H., BADR Y., J. Sol-Gel Sci. Techn., 25 (2002), 5.
  • [36] LI X., YIN X., ZHANG L., HE S., J. Non-Cryst. Solids, 354 (2008), 3254.
  • [37] DUTTA S.K., SPRIGGS R.M., J. Am. Ceram. Soc., 53 (1970), 61.
  • [38] DEY D., BRADT R.C., J. Am. Ceram. Soc., 75 (1992), 2529.
  • [39] ZHANG T.S., MA J., KONG L.B., ZENG Z.Q., HING P., KILNER J.A., Mat. Sci. Eng. B-Adv., 103 (2003), 177.
  • [40] GLASSTONE S., LAIDLER K.J., EYRING H., The Theory Of Rate Processes, McGraw-Hill, New York, 1941.
  • [41] FLESCH J., KERNER D., RIEMENSCHNEIDER H., REIMERT R., Powder Technol., 183 (2008), 467.
  • [42] RIMER J.D., VLACHOS D.G., LOBO R.F., The 40th Anniversary of International Zeolite Conference, (2007), 133.
  • [43] CHEN Z.-L., SHEN P., Ceram. Int., 39 (2013), 2365.
  • [44] SHIUE Y.S., MATTHEWSON M.J., J. Eur. Ceram. Soc., 22 (2002), 2325.
  • [45] FERTANI-GMATI M., BRAHIM K., KHATTECH I., JEMAL M., Thermochim. Acta, 594 (2014), 58.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adc6b673-1afe-4748-bcf5-886d867cfba9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.