PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polarization properties of Gaussian–Schell model quantization field in a turbulent marine-atmosphere

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polarization properties of Gaussian–Schell model quantization field propagating through the Kolmogorov turbulence of a marine-atmosphere channel are studied based on the degree of quantum polarization. The effective photon annihilation and creation operators of Gaussian–Schell model quantization field propagation in a marine-atmosphere are developed by making use of the extended Huygens–Fresnel integral of quantum field. The effects of the outer scale on the degree of polarization can be neglected. As the source transverse coherent width, the number of received photons, the inner scale of turbulent eddies, and the source transverse radius decrease or the re- fractive index structure parameter increases, the degree of polarization decreases. In theory, we find that the polarization fade of marine-atmosphere turbulence channels is larger than that of terrene-atmosphere turbulence channels under same transport parameters and the channel with a stronger turbulence strength will possess a larger detection area of a polarization signal, which have potentially important implications for free-space quantum key distribution.
Czasopismo
Rocznik
Strony
335--345
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • School of Science, Jiangnan University, Wuxi 214122, China
autor
  • School of Science, Jiangnan University, Wuxi 214122, China
autor
  • School of Science, Jiangnan University, Wuxi 214122, China
autor
  • School of Science, Jiangnan University, Wuxi 214122, China
autor
  • School of Science, Jiangnan University, Wuxi 214122, China
autor
  • School of Science, Jiangnan University, Wuxi 214122, China
autor
  • School of Science, Jiangnan University, Wuxi 214122, China
  • School of Internet of Things, Jiangnan University, Wuxi 214122, China
Bibliografia
  • [1] SALEM M., KOROTKOVA O., DOGARIU A., WOLF E., Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere, Waves in Random Media 14(4), 2004, pp. 513–523.
  • [2] KOROTKOVA O., SALEM M., WOLF E., The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence, Optics Communications 233(4–6), 2004, pp. 225–230.
  • [3] ZHU Y., ZHAO D., Propagation of a stochastic electromagnetic Gaussian Schell model beam through an optical system in turbulent atmosphere, Applied Physics B: Lasers and Optics 96(1), 2009, pp. 155–160.
  • [4] XINHUI ZHAO, YONG YAO, YUNXU SUN, CHAO LIU, Condition for Gaussian Schell-model beam to maintain the state of polarization on the propagation in free space, Optics Express 17(20), 2009, pp. 17888–17894.
  • [5] JI XIAO-LING, PU ZHENG-CAI, Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams, Chinese Physics B 19(2), 2010, article 029201.
  • [6] SHIJUN ZHU, YANGJIAN CAI, KOROTKOVA O., Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam, Optics Express 18(12), 2010, pp. 12587–12598.
  • [7] HAIYAN WANG, XIANGYIN LI, Propagation properties of a partially polarized electromagnetic twist anisotropic Gaussian Schell-model beam in turbulent atmosphere, Optik – International Journal for Light and Electron Optics 121(15), 2010, pp. 1376–1382 .
  • [8] WANG H., LIU D., ZHOU Z., The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere, Applied Physics B: Lasers and Optics 101(1–2), 2010, pp. 361–369.
  • [9] YIXIN ZHANG, YUANGUANG WANG, JIANYU WANG, JIANJUN JIA, Polarization fluctuations of Gaussian Schell-model type photon beams in a slant channel with non-Kolmogorov turbulence, Optik – International Journal for Light and Electron Optics 123(17), 2012, pp. 1511–1514.
  • [10] XINYUE DU, DAOMU ZHAO, Polarization modulation of stochastic electromagnetic beams on propagation through the turbulent atmosphere, Optics Express 17(6), 2009, pp. 4257–4262.
  • [11] YINGBIN ZHU, DAOMU ZHAO, XINYUE DU, Propagation of stochastic Gaussian–Schell model array beams in turbulent atmosphere, Optics Express 16(22), 2008, pp. 18437–18442.
  • [12] WEIYI DAN, CE CHEN, MINGJIAN CHENG, JIE GAO, ZHENGDA HU, YIXIN ZHANG, Polarization transverse distribution of multi-Gaussian Schell photon beams in a turbulent atmosphere, Optik – International Journal for Light and Electron Optics 125(17), 2014, pp. 4637–4641.
  • [13] LI J., DING C., LÜ B., Generalized Stokes parameters of random electromagnetic vortex beams propagating through atmospheric turbulence, Applied Physics B: Lasers and Optics 103(1), 2011, pp. 245–255.
  • [14] JUN ZENG, JINHONG LI, Dynamic evolution and classification of coherent vortices in atmospheric turbulence, Optica Applicata 45(3), 2015, pp. 299–308.
  • [15] SHAPIRO J.H., Near-field turbulence effects on quantum-key distribution, Physical Review A 67(2), 2003, article 022309.
  • [16] YUANGUANG WANG, YIXIN ZHANG, JIANYU WANG, JIANJUN JIA, Degree of polarization for quantum light field propagation through non-Kolmogorov turbulence, Optics and Laser Technology 43(4), 2011, pp. 776–780.
  • [17] PEŘINOVÁ V., LUKŠ A., Quantization of Hermite–Gaussian and Laguerre–Gaussian beams and their spatial transformations, Journal of Modern Optics 53(5–6), 2006, pp. 659–675.
  • [18] WEI LU, LIREN LIU, JIANFENG SUN, QINGGUO YANG, YONGJIAN ZHU, Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence, Optics Communications 271(1), 2007, pp. 1–8.
  • [19] GRAYSHAN K.J., STRöMQVIST VETELINO F., YOUNG C.Y., A marine atmospheric spectrum for laser propagation, Waves in Random and Complex Media 18(1), 2008, pp. 173–184.
  • [20] GRADSHTEYN I.S., RYZHIK I.M., Table of Integrals, Series, and Products, Academic Press, New York, 2007.
  • [21] MAJUMDAR A.K., RICKLIN J.C., Free-Space Laser Communications Principles and Advances, Springer, New York, 2008.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adc4c1e0-58da-48b9-8621-647e8214b862
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.