PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Herein, an effort was made to investigate the antibacterial potential of agarose nanoparticles (ANPs) and poly(quaternary ammonium) modifi ed ANPs (mANPs) against Escherichia coli (gram-negative bacterium) and Staphylococcus aureus (gram positive bacterium) in liquid systems as well as on agar plates. ANPs were synthesized by nanoprecipitation technology and characterized by XRD, TEM, TGA, DTA and DLS. The particle size estimated was 30 nm while atomic force microscopy was used to observe the interaction of ligand on ANPs. Antimicrobial characterization was monitored by colony forming units (CFU) as a function of ANPs concentration on agar plates. It was observed that ANPs showed 15 x 109/ml CFU after 24 hours of incubation at 20 mM ANPs concentration while the modified ANPs exhibited 21 x 109/ml CFU under similar incubation conditions. Moreover, zone of inhibition (ZOI) was 2.9 and 3.8 cm, respectively for E. coli by ANPs at 0.2 and 0.4 mM, respectively while it was 3.2 and 3.8 cm respectively by modified ANPs under similar conditions. Similarly, ZOI for S. aureus by ANPs at 0.2 and 0.4 mM was observed at 3.1 and 4.0 cm, respectively, while these values were 3.5 and 4.1 cm, respectively for modified ANPs under similar incubation conditions.
Rocznik
Strony
9--12
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Ibn Sina National College for Medical Sciences, Department of Biochemistry, Jeddah-21418, Kingdom of Saudi Arabia
autor
  • Ibn Sina National College of Medical Studies, Department of Pharmaceutical Sciences, Jeddah-21418, Kingdom of Saudi Arabia
autor
  • King Abdulaziz University, Center of Excellence in Genomic and Medicine Research, Jeddah-21589, Kingdom of Saudi Arabia
  • King Abdulaziz University, Center of Excellence in Genomic and Medicine Research, Jeddah-21589, Kingdom of Saudi Arabia
autor
  • Ibn Sina National College for Medical Sciences, Department of Biochemistry, Jeddah-21418, Kingdom of Saudi Arabia
Bibliografia
  • 1. Ansari, S.A. & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 30(3), 512–523. DOI: 10.1016/j.biotechadv.2011.09.005.
  • 2. Chibber, S., Ansari, S.A. & Satar, R. (2013). New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. J. Nan. Res. 15(4), 1–13. DOI: 10.1007/s11051-013-1492-x.
  • 3. Rao, J.P. & Geckeler, K.E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36(7), 887–913. DOI: 10.1016/j.progpolymsci. 2011.01.001.
  • 4. Nitta, S.K. & Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 14(1), 1629–1654. DOI: 10.3390/ijms14011629.
  • 5. Nair, L.S. & Laurencin C.T. (2007). Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • 6. Zhang, H., Wang, D., Butler, R., Campbell, N.L., Long, J., Tan, B., Duncalf, D.J., Foster, A.J., Hopkinson, A., Taylor, D., Angus, D., Cooper, AI. & Rannard, S.P. (2008). Formation and enhanced biocidal activity of water dispersable organic nanoparticles. Nat. Nanotechnol. 3(3), 506–511. DOI: 10.1038/nnano.2008.188.
  • 7. Wan, W. & Yeow, J.T.W. (2012). Antibacterial properties of poly (quaternary ammonium) modified gold and titanium dioxide nanoparticles. J. Nan. Nanotechnol. 12(6), 4601–4606. DOI: http://dx.doi.org/10.1166/jnn.2012.6147.
  • 8. Blackburn, C.D. & Davies, A.R. (1994). Development of antibiotic-resistant strains for the enumeration of foodborne pathogenic bacteria in stored foods. Int. J. Food Microbiol. 24(1–2), 125–136. DOI: 10.1016/0168-1605(94)90112-0.
  • 9. Rizzello, L., Cingolani, R. & Pompa, P.P. (2013). Nanotechnology tools for antibacterial materials. Nanomed. 8(5), 807–821. DOI: 10.2217/nnm.13.63.
  • 10. Denyer, S.P. & Stewart, G.S.A.B. (1998). Mechanisms of action of disinfectants. Int. Biodet. Biodegrad. 41(3–4), 261–268. DOI: 10.1016/S0964-8305(98)00023-7.
  • 11. Chen, C.Z., Beck-Tan, N.C. & Cooper, S.L. (1999). Incorporation of dimethyl-dodecyl ammonium chloride functionalities onto poly(propylene imine) dendrimers signifi cantly enhances their antibacterial properties. Chem. Commun. 16(5),1585–1586. DOI: 10.1016/S02684-8305(99)00048-7.
  • 12. Chen, C.Z., Beck-Tan, N.C., Dhurjati, P.T.K., van Dyk, R.A., Larossa, P. & Cooper, S.L. (2000). Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromol. 1(3), 473–480. DOI: 10.1021/bm0055495.
  • 13. Ioannou, C.J., Hanlon, G.W. & Denyer, S.P. (2007). Action of disinfectant quaternary ammonium compounds against Staphylococcus. Antimicrob. Ag. Chemother. 51(1), 296–306. DOI: 10.1128/AAC.00375-06.
  • 14. McBain, A.J., Ledder, R.G., Moore, L.E., Catrenich C. & Gilbert, P. (2004). Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol. 70(6), 3449–3456. DOI: 10.1128/AEM.70.6.3449-3456.2004.
  • 15. Wang, N., Wu, X.S. & Mesiha, M. (1995). A new method for preparation of protein-loaded agarose nanoparticles. Pharmacol. Res. 12(3), 257. DOI: 10.1016/j.nano.2005.12.003.
  • 16. Wang, N. & Wu, X.S. (1997). Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm. Dev. Technol. 2(2), 135–142. DOI: 10.3109/10837459709022618.
  • 17. Kunkel, J. & Asuri, P. (2014). Function, structure and stability of enzymes confined in agarose gels. Plos One 9(5), e86785. DOI: 10.1371/journal.pone.0086785.
  • 18. Zhang, X., Yan, S., Tyagi, R.D. & Surampalli, R.Y. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4), 489–494. DOI: 10.1016/j.chemosphere.2010.10.023.
  • 19. Doktycz, M.J., Sullivan, C.J., Hoyt, P.R., Pelletier, D.A., Wud, S. & Allison, D.P. (2003). AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 97(1–4), 209–216. DOI: 10.1016/S0304-3991(03)00045-7.
  • 20. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F. & Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafi ne ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870. DOI: 10.1021/nl052326h.
  • 21. Kim, M.H., Yamayoshi, I., Mathew, S., Liln, H., Nayfach, J. & Simon, S.I. (2013). Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann. Biomed. Eng. 41(3), 598–609. DOI: 10.1007/s10439-012-0698-x.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adbf6adb-cf83-409b-9334-b296649c1f52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.