PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Daily Suspended Sediment Prediction Using Seasonal Time Series and Artificial Intelligence Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimating the amount of suspended sediment in rivers correctly is important due to the adverse impacts encountered during the design and maintenance of hydraulic structures such as dams, regulators, water channels and bridges. The sediment concentration and discharge currents have usually complex relationship, especially on long term scales, which can lead to high uncertainties in load estimates for certain components. In this paper, with several data-driven methods, including two types of perceptron support vector machines with radial basis function kernel (SVM-RBF), and poly kernel learning algorithms (SVM-PK), Library SVM (LibSVM), adaptive neuro-fuzzy (NF) and statistical approaches such as sediment rating curves (SRC), multi linear regression (MLR) are used for forecasting daily suspended sediment concentration from daily temperature of water and streamflow in the river. Daily data are measured at Augusta station by the US Geological Survey. 15 different input combinations (1 to 15) were used for SVM-PK, SVM-RBF, LibSVM, NF and MLR model studies. All approaches are compared to each other according to three statistical criteria; mean absolute errors (MAE), root mean square errors (RMSE) and correlation coefficient (R). Of the applied linear and nonlinear methods, LibSVM and NF have good results, but LibSVM generates a slightly better fit under whole daily sediment values.
Rocznik
Tom
Strony
117--137
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Civil Engineering Department Iskenderun Technical University, Civil Engineering Department, Turkey
  • Civil Engineering Department Iskenderun Technical University, Civil Engineering Department, Turkey
  • Civil Engineering Department Iskenderun Technical University, Civil Engineering Department, Turkey
  • Environmental Engineering Institute, Kosice Technical University, Slovakia
  • Civil Engineering Department, Osmaniye Korkut Ata University, Turkey
  • Civil Engineering Department, Osmaniye Korkut Ata University, Turkey
Bibliografia
  • Berk, R. A. (2004). Regression analysis: A constructive critique (Vol. 11). Sage.
  • Buyukyildiz, M., & Kumcu, S. Y. (2017). An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models. Water resources management, 31(4), 1343- 1359. DOI: https://doi.org/10.1007/s11269-017-1581-1.
  • Çatal, Y., & Saplioğlu, K. (2018). Comparison of adaptive neuro-fuzzy inference system, artificial neural networks and non-linear regression for bark volume estimation in brutian pine (Pinus brutia Ten.). Applied ecology and environmental research, 16(2), 2015-2027.
  • Chang, C.C., & Lin, C.J. (2002). Training v-support vector regression: theory and algorithms. Neural computation, 14(8), 1959-1977.
  • Choubin, B., Darabi, H., Rahmati, O., Sajedi-Hosseini, F., & Kløve, B. (2018). River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Science of the Total Environment, 615, 272-281.
  • Cortes, C., Vapnik, V. (1995) Support-vector networks. Mach Learn, 20, 273-297. DOI: https://doi.org/10.1007/BF00994018
  • Demirci, M., & Baltaci, A. (2013). Prediction of suspended sediment in river using fuzzy logic and multilinear regression approaches. Neural Computing and Applications, 23(1), 145-151. DOI: https://doi.org/10.1007/s00521-012-1280-z
  • Demirci, M., Üneş, F., & Saydemir, S. (2015). Suspended sediment estimation using an artificial intelligence approach. In Sediment matters, 83-95. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-14696-6_6
  • Demirci, M., Unes, F., Kaya, Y. Z., Mamak, M., Tasar, B., & Ispir, E. (2017). Estimation of groundwater level using artificial neural networks: a case study of Hatay-Turkey. In "10th International Conference Environmental Engineering".
  • Demirci, M., Unes, F., Kaya, Y. Z., Tasar, B., & Varcin, H. (2018). Modeling of dam reservoir volume using adaptive neuro fuzzy method. Aerul si Apa. Componente ale Mediului, 145-152.
  • Ebtehaj, I., & Bonakdari, H. (2017). Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport. Applied Water Science, 7(8), 4287-4299.
  • Ehteram, M., Ahmed, A. N., Latif, S. D., Huang, Y. F., Alizamir, M., Kisi, O., . & El-Shafie, A. (2021). Design of a hybrid ANN multi-objective whale algorithm for suspended sediment load prediction. Environmental Science and Pollution Research, 28(2), 1596-1611.
  • Emamgholizadeh, S., & Demneh, R. K. (2019). A comparison of artificial intelligence models for the estimation of daily suspended sediment load: a case study on the Telar and Kasilian rivers in Iran. Water Supply, 19(1), 165-178.
  • Firat, M. & Güngör, M. 2010. Monthly total sediment forecasting using adaptive neuro fuzzy inference system. Stochastic Environmental Research and Risk Assessment, 24, 259-270. DOI: https://doi.org/10.1007/s00477-009-0315-1
  • Ghavidel, S. Z. Z., & Montaseri, M. (2014). Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin. Stochastic environmental research and risk assessment, 28(8), 2101-2118.
  • Gunawan, T. A., Kusuma, M. S. B., Cahyono, M., & Nugroho, J. (2017). The application of backpropagation neural network method to estimate the sediment loads. In MATEC Web of Conferences, 101, 05016. EDP Sciences.
  • Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification.
  • Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685. DOI: https://doi.org/10.1109/21.256541
  • Kişi, Ö. (2005). Daily river flow forecasting using artificial neural networks and autoregressive models. Turkish Journal of Engineering and Environmental Sciences, 29(1), 9-20.
  • Kisi, O., & Zounemat-Kermani, M. (2016). Suspended sediment modeling using neurofuzzy embedded fuzzy c-means clustering technique. Water resources management, 30(11), 3979-3994. DOI: https://doi.org/10.1007/s11269-016-1405-8
  • Kitsikoudis, V., Sidiropoulos, E., & Hrissanthou, V. (2015). Assessment of sediment transport approaches for sand-bed rivers by means of machine learning. Hydrological sciences journal, 60(9), 1566-1586.
  • Meshram, S. G., Singh, V. P., Kisi, O., Karimi, V., & Meshram, C. (2020). Application of artificial neural networks, support vector machine and multiple model-ANN to sediment yield prediction. Water Resources Management, 34(15), 4561-4575.
  • Mirbagheri, S. A., Nourani, V., Rajee, T. & Alikhani, A. (2010). Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrological Sciences Journal 55, 1175-1189. DOI: https://doi.org/10.1080/02626667.2010.508871
  • Partovian, A., Nourani, V., & Alami, M. T. (2016). Hybrid denoising-jittering data processing approach to enhance sediment load prediction of muddy rivers. Journal of Mountain Science, 13(12), 2135-2146.
  • Salih, S. Q., Sharafati, A., Khosravi, K., Faris, H., Kisi, O., Tao, H., . & Yaseen, Z. M. (2020). River suspended sediment load prediction based on river discharge information: application of newly developed data mining models. Hydrological Sciences Journal, 65(4), 624-637.
  • Saplıoğlu, K., & Çimen, M. (2010). Yapay sinir ağlarını kullanarak günlük yağış miktarının tahmini. Mühendislik Bilimleri ve Tasarım Dergisi, 1(1), 14-21.
  • Sayed, T., Tavakolie, A. & Razavi, A. 2003. Comparison of adaptive network based fuzzy inference systems and B-spline neuro-fuzzy mode choice models. Journal of Computing in Civil Engineering 17, 123-130. DOI: https://doi.org/10.1061/(ASCE)0887-3801(2003)17:2(123)
  • Schölkopf, B., Bartlett, P., Smola, A. & Williamson, R. 1998. Support vector regression with automatic accuracy control. In ICANN 98, 111-116. Springer, London.
  • Seyedian, S. M., & Rouhani, H. (2015). Assessing ANFIS accuracy in estimation of suspended sediments. Građevinar, 67(12), 1165-1176.
  • Taşar, B., Kaya, Y. Z., Varçin, H., Üneş, F. & Demirci, M. (2017). Forecasting of suspended sediment in rivers using artificial neural networks approach. International Journal of Advanced Engineering Research and Science, 4(12).
  • Turhan, E., & Çağatay, H. Ö. (2016). Eksik akım verilerinin tahmin modelinin oluşturulmasında yapay sinir ağlarının kullanımı: Asi Nehri-Demirköprü akım gözlem istasyonu örneği. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(1), 93-106 (in Turkish).
  • Turhan, E., Keleş, M. K., Tantekin, A., & Keleş, A. E. (2019). The investigation of the applicability of data-driven techniques in hydrological modeling: The case of seyhan basin. Rocznik Ochrona Środowiska, 21, 29-51.
  • Üneş, F., Joksimovic, D. & Kisi, O. 2015. Plunging flow depth estimation in a stratified reservoir using neuro-fuzzy technique. Water Resources Management 29, 3055-3077. DOI: https://doi.org/10.1007/s11269-015-0978-y
  • Üneş, F., Doğan, S., Taşar, B., Kaya, Y., & Demirci, M. (2018a). The Evaluation and Comparison of Daily Reference Evapotranspiration with ANN and Empirical Methods. Natural and Engineering Sciences, 3(3), 54-64.
  • Üneş, F., Bölük, O., Kaya, Y. Z., Taşar, B., & Varçin, H. (2018b). Estimation of Rainfall- Runoff Relationship Using Artificial Neural Network Models for Muskegon Basin. International Journal of Advanced Engineering Research and Science, 5(12), 198-205.
  • USGS.gov | Science for a changing world [WWW Document], n.d. URL https://www.usgs.gov/
  • Wieprecht, S., Tolossa, H. G., & Yang, C. T. (2013). A neuro-fuzzy-based modelling approach for sediment transport computation. Hydrological sciences journal, 58(3), 587-599.
  • Williams, J. R. (1978). A sediment graph model based on an instantaneous unit sediment graph. Water Resources Research, 14(4), 659-664. DOI: https://doi.org/10.1029/WR014i004p00659
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adbefe7d-38ec-4552-84ef-0620934f746c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.