PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of the selected methods of macroalgae cultivation in marine waters

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza wybranych metod uprawy makroglonów w wodach morskich
Języki publikacji
EN
Abstrakty
EN
The article presents methods of macroalgae cultivation performed worldwide in marine waters (long-lines, bottom planting, integrated cultivation). It describes a variety of technical approaches and discusses the possibility of conducting macroalgae cultivation in the Polish marine areas. All the presented methods can be tested in the Polish zone of the Baltic Sea, except integrated mariculture (IMTA). Species of the Ulva genus can be considered for culturing, however there is a lack of wide-ranging studies providing information on their biomass production on a larger scale and detailed chemical content. The effectiveness of cultivation will be restricted due to seasonal occurrence of species, as the conditions prevailing in the Polish marine waters are not favourable to macroalgae cultivation. Thus, it is suggested to consider implementation of a project aiming at the cultivation of perennial species Furcellaria lumbricalis (introduction of the species from the Gulf of Riga to the Puck Bay).
PL
W artykule zaprezentowano wybrane metody uprawy makroglonów w wodach morskich na świecie (uprawy linowe w toni wodnej, uprawy na dnie, uprawy zintegrowane). Opisano różnorodne podejścia techniczne i przeanalizowano możliwość uprawy makroglonów w polskich obszarach morskich. Wszystkie zaprezentowane metody upraw makroglonów mogą być przetestowane w polskiej strefie Bałtyku, poza marikultarami zintegrowanymi (IMTA). W uprawie mogą być brane pod uwagę gatunki z rodzaju Ulva, jednakże brakuje szeroko zakrojonych badań nad przyrostem ich biomasy oraz składem chemicznym. Należy również podkreślić, że efektywność tych upraw będzie ograniczona ze względu na sezonowy ich charakter, gdyż warunki panujące w polskich obszarach morskich nie są sprzyjające uprawom makroglonów. Dlatego też, sugeruje się realizację projektu dotyczącego uprawy gatunku wieloletniego Furcellaria lumbricalis (introdukcja gatunku z Zatoki Ryskiej do Zatoki Puckiej).
Rocznik
Strony
129--136
Opis fizyczny
Bibliogr. 56 poz., tab.
Twórcy
  • Department of Aquatic Ecology, Maritime Institute in Gdańsk, Poland
autor
  • Department of Aquatic Ecology, Maritime Institute in Gdańsk, Poland
  • Department of Aquatic Ecology, Maritime Institute in Gdańsk, Poland
Bibliografia
  • 1. Advanced Textiles For Open Sea Biomass Cultivation – European project within FP7 (NMP work programme), 2012-2015, http://www.atsea-project.eu/, date of access 3 March 2017.
  • 2. Aitken D., Bulboa C., Godoy-Faundez A., Turrion-Gomez J. L., Antizar-Ladislao B. (2014). Life cycle assessment of macroalgae cultivation and processing for biofuel production. Journal of Cleaner Production, 75, 45-56.
  • 3. Amosu A. O., Robertson-Andersson D. V., Maneveldt G. W. (2015). Seaweed Mariculture Provides Feed, Green Energy Production, Bioremediation. Global Aquaculture Alliance, 66-68.
  • 4. Bech K. S. (2013). State-of-the-art on brown macro algae in Denmark. Industrial development and research. Danish Technological Institute, Centre for Renewable Energy and Transport, 13.
  • 5. Bezerra A.F., Marinho-Soriano E. (2010). Cultivation of the red seaweed Gracilaria birdiae (Gracilariales, Rhodophyta) in tropical waters of northeast Brazil. Biomass and Biomass Energy, 34, 1813-1817.
  • 6. Bharathiraja B., Chakravarthy M., Ranjith Kumar R., Yogendrana D., Yuvaraj D., Jayamuthunagai J., Praveen Kumar R., Palani S. (2015). Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renewable and Sustainable Energy Reviews, 47, 634-653.
  • 7. Buck B. H., Buchholz C. M. (2004). The offshore ring: A new system design or the open ocean aquaculture of macroalgae. Journal of applied Phycology, 16, 355-368.
  • 8. Buschmann A. H., Renato Westermeier R., Retamales C. A. (1995). Cultivation of Gracilaria on the sea-bottom in southern Chile: a review. Journal of Applied Phycology, 7, 291-301.
  • 9. Buschmann A. H., Varela D. A., Hernández-González M. C., Huovinen P. (2008). Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Appl Phycol, 20, 571-577.
  • 10. Ciszewski P., Ciszewska I., Kruk-Dowgiałło L., Osowiecki A., Rybicka D., Wiktor J., Wolska-Pyś M., Żmudziński L., Trokowicz D. (1992a). Trends of long-term alterations of the Puck Bay ecosystem. Studia i Materiały Oceanolog. No 60, Marine Biology 8, PAN, KBM, Sopot: 33-84.
  • 11. Ciszewski P., Kruk-Dowgiałło L. (1995). Environmental deterioration of the Puck Lagoon. Gudelis V., Povianskas R., Roepstorff A. (eds.) Coastal Conservation 7& Menagement in the Baltic Region. Proceedings of the EUCC-WWF Conference 2-8 May 1994, RigaKlaipeda-Kaliningrad: 159-165.
  • 12. Ciszewski P., Kruk-Dowgiałło L., Andrulewicz E. (1991). A study on pollution of the Puck Lagoon and possibility of restoring the Lagoon’s original ecological state. Acta Ichthyologica et Piscatoria Vol. XXI, Supplement, Szczecin: 29-37.
  • 13. Ciszewski P., Kruk-Dowgiałło L., Ciszewska I. (1995). Research methods used for elaborating a project to reclaim the Puck Lagoon on the Polish coast of the Baltic Sea. Gudelis V., Povianskas R., Roepstorff A. (eds.) Coastal Conservation 7& Menagement in the Baltic Region. Proceedings of the EUCC-WWF Conference 2-8 May 1994, RigaKlaipeda-Kaliningrad: 159-165.
  • 14. Ciszewski P., Kruk-Dowgiałło L., Żmudziński L. (1992b). Deterioration of the Puck Bay and biotechnical approaches to its reclamation. Proceedings of the 12-th Baltic Marine Biologists Symposium, Helsingor, Denmark, 25-30 August 1991: 43-46.
  • 15. Ciszewski P., Kruk-Dowgiałło L., Żółkoś-Margońska H. (1994). Projekt rewaloryzacji wewnętrznej Zatoki Puckiej. In: Zatoka Pucka. Możliwości rewaloryzacji. (eds.) L. KrukDowgiałło and P. Ciszewski. IOŚ Warszawa.
  • 16. Czapke K. (1960). Badania nad możliwością otrzymania agar-agaru z wodorostów morskich występujących w polskich wodach przybrzeżnych. Prace MIR, Nr 11/B, Gdynia, 95-111.
  • 17. Czapke K., Trzęsiński P. (1964). Związki alginowe z morszczynu bałtyckiego. Prace MIR Nr 12/B, Gdynia, 59-69.
  • 18. Dubrawski R. , Kruk-Dowgiałło L. (1998). Assessment of the rate of change of the biocenosis of the inner Puck Bay. Bulletin of the Maritime Institute in Gdańsk.Vol. XXV, No 2. :55-73.
  • 19. En Algae project 2011-2014, www.enalgae.eu, date of access 3 June 2016.
  • 20. Food and Agriculture Organization for the Unated Nations, www.fao.org, date of access 5 April 2017.
  • 21. Gregersen Ó. (2013). Offshore production of brown algae in the North Atlantic. Presentation on Danish macroalgae conference, 9 Oct 2013.
  • 22. Handå A., Forbord S., Wang X., Broch O. J., Dahle S. W., Størseth T. R., Reitan K. I., Olsen Y., Skjermo J. (2013). Seasonal- and depth-dependent growth of cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) aquaculture in Norway. Aquaculture, 414-415, 191-201.
  • 23. Haroon A. M., Szaniawska A., (1995). Variations in energy values and lipid content in Enteromorpha spp. from the Gulf of Gdańsk, Oceanologia, 37 (2), 171-180.
  • 24. Haroon A. M., Szaniawska A., Normat M., Janas U. 2000. The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Baltic Sea. Oceanologia, 42 (1), 19-28.
  • 25. HELCOM (2014). Eutrophication status of the Baltic Sea 2007-2011 – A concise thematic assessment. Baltic Sea Environment Proceedings No. 143.
  • 26. Hughes A. D., Kelly M. S., Black K. D., Stanley M. S. (2012). Biogas from Macroalgae: is it time to revisit the idea? Bioechology for Biofuels, 5, 86.
  • 27. Kersen P., Paalme T., Pajusalu L., Martin G. (2017). Biotechnological applications of the red alga Furcellaria lumbricalis and its cultivation potential in the Baltic Sea. Bot Mar 60(2): 207-218.
  • 28. Kraan S. (2013). Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change, 18, 27-46.
  • 29. Kruk-Dowgiałło L. (1991). Long-term changes in the structure of underwater meadows of the Puck Lagoon. Acta Ichthyologica et Piscatoria Vol. XXI, Supplement, Szczecin: 77-84.
  • 30. Kruk-Dowgiałło L. (1996). The role of brown algae of the family Ectocarpaceae in the degradation of the underwater meadows of the Puck Lagoon. (in:) Oceanological Studies Vol. XXV, No. 1-2 IO UG, PAN: 125-135.
  • 31. Kruk-Dowgiałło L., Ciszewski P. (1994). Próba rekonstrukcji łąk podwodnych w wewnętrznej Zatoce Puckiej. In: Zatoka Pucka. Możliwości rewaloryzacji. (eds.) L. KrukDowgiałło and P. Ciszewski. IOŚ Warszawa, 145-155.
  • 32. Kruk-Dowgiałło L., Dubrawski R. (1998). A system of protection and restoration of the Gulf of Gdańsk. Bulletin of the Maritime Institute in Gdańsk, XXV (1), 45-67.
  • 33. Kruk-Dowgiałło L., A. Szaniawska. (2008). Gulf of Gdańsk and Puck Bay. Part. II.B Estern Balic Coast (in:) Ekology of Baltic Coastal Waters. Ecological Studies 197. Ed. U. Schewier, Sprinter-Verlag Berlin Heidelberg: 139-162.
  • 34. Legrand C., Olofsson M. (2011). Growing algae in Scandinavia: utopia or opportunity? Algae: the sustainable biomass for the future. Perspectives from the Submariner project, algae cooperation event, Sweden, 28-29 Sept 2011, 16-17.
  • 35. Lüning K., Mortensen L. (2015). European aquaculture of sugar kelp (Saccharina latissima) for food industries: iodine content and epiphytic animals as major problems. Bor Mar 58(6): 449-455.
  • 36. Marinho G. S., Holdt S. L., Birkeland M. J., Angelidaki I. (2015). Commercial cultivation and bioremediation potential of sugar kelp, Saccharina latissima, in Danish waters. J Appl Phycol. 27(5): 1963-1973.
  • 37. Martin G., Paaleme T., Torn K. (2006a). Growth and production rates of loose-lying and attached forms of the red algae Furcellaria lumbricalis and Coccotylus truncatus in Kassari Bay, the West Estonian Archipelago Sea. Hydrobiologia 554:107–115.
  • 38. Martin G., Paaleme T., Torn K. (2006b). Seasonality pattern of biomass accumulation in a drifting Furcellaria lumbricalis community in the waters of the West Estonian Archipelago, Baltic Sea. Journal of Applied Phycology 18: 557–563.
  • 39. Mc Hugh D. J. (2011). A guide to the seaweed industry (FAO Fisheries Technical paper). Rome: FAO; p.441.
  • 40. Neori A. , Krom M. D., Ellner S. P., Boyd C. E., Popper D., Rabinovitch R., Davison P. J., Dvir O., Zuber D., Ucko M., Angel D., Gordin H. (1996). Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture, 141, 183-199.
  • 41. Ohno M., Dan A., Yoshimoto R. , Matsuoka M. (2011). Morphology and quality of cultivated Laminaria japonica Aresch. in the temperate waters of Naruto Straits, Japan. Bull. Tokushima. Pref. Fish. Res. Ins. No. 7 , 5-10.
  • 42. Pellizzari F., Reis R. P. (2011). Seaweed cultivation on the Southern and Southeastern Brazilian Coast. Revista Brasileira de Farmacognosia, Basilian Journal of Pharmacognosy, 21(2), 305-312.
  • 43. Peteiro C., Freire Ó. (2011). Effect of water motion on the cultivation of the commercial seaweed Undaria pinnatifida in a coastal bay of Galicia, Northwest Spain. Aquaculture, 314, 269-276.
  • 44. Peteiro C., Salinas J. M., Freire Ó., Fuertes C. (2006). Cultivation of the autoctonous seaweed Laminaria saccharina off the Galician coast (NW Spain): production and features of the sporophytes for an annual and biennial harvest. An International Journal of Marine Sciences, Thalassas, 22 (1), 45-53.
  • 45. Peteiro C., Salinas J. M., Freire Ó., Fuertes C. (2006). Cultivation of the autoctonous seaweed Laminaria saccharina off the Galician coast (NW Spain): production and features of the sporophytes for an annual and biennial harvest. An International Journal of Marine Sciences, Thalassas, 22 (1), 45-53.
  • 46. Radulovich R., Umanzor S., Cabrera R., Mata R. (2015). Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture, 436, 40-46.
  • 47. Redmond S., Green L., Yarish C., Kim J., Neefus C. (2014). New England Seaweed Culture Handbook. Nursery Systems. Connecticut Sea Grant CTSG‐14‐01, 92.
  • 48. Sahoo D., Yarish D. (2005). Mariculture of seaweeds. In: Algal culturing techniques. Andersen R. A. (ed.). Phycological Society of America, Chapter, 15, 219-237.
  • 49. Sandau E., Sandau P., Pulz O., Zimmermann M. (1996) Heavy metal sorption by marine algae by-products. Acta Biotechnologica 16 (2-3), 103-119.
  • 50. Schultz‐Zehden A., Matczak M. (eds.) (2012). SUBMARINER Compendium. An assessment of Innovative and Sustainable Uses of Baltic Marine Resources. Gdansk.
  • 51. Seppälä J. (ed.) (2013). Potential uses of micro- and macroalgae in the Baltic Sea Region. SUBMARINER Report 10/2013.
  • 52. Titlyanov E. A., Tilyanova T. V. (2010). Seaweed Cultivation: Methods and Problems. Russian Journal of Marine Biology, 36 (4), 227-242.
  • 53. Wegeberg S. (2010). Cultivation of kelp species in Limfjord, Denmark. Department of Biology, SCIENCE, Copenhagen University, 11.
  • 54. Wiktor K. (1976). Zmiany w biocenozach zanieczyszczonych wód Bałtyku Studia i Materiały Oceanolog. 15, Biologia Morza (3), 143-169.
  • 55. Zemke-White W. L., Ohno M. (1999). World seaweed utilisation: An end-of-century summary. Journal of Applied Phycology, 11, 369-376.
  • 56. Zhou Yi, Hongsheng Y., Hu H, Liu Y.,Mao Y., Zhou H., Xu X., Zhang F. (2006). Bioremediation potential of the macroalga Gracilaria lemaneiformis(Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252, 264-276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adbe1d1a-c845-46ae-a234-617271fc8982
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.