Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thermal ablation surgery serves as one of the main approaches to treat liver tumors. The pretreatment planning, which highly demands the experience and ability of the physician, plays a vital role in thermal ablation surgery. The planning of multiple puncturing is necessary for avoiding the possible interference, destroying the tumor thoroughly and minimizing the damage to healthy tissue. A GPU-independent pretreatment planning method is proposed based on multi-objective optimization, which takes the most comprehensive constraints into consideration. An adaptive decision method of closing kernel size based on Jenks Natural Breaks is utilized to describe the final feasible region more accurately. It should be noted that the reasonable procedure of solving the feasible region and the use of KD tree based high dimensional search approach are used to enhance the computational efficiency. Seven constraints are handled within 7 s without GPU acceleration. The Pareto front points of nine puncturing tests are obtained in 5 s by using the NSGA-II algorithm. To evaluate the maximum difference and similarity between the planning results and the puncturing points recommended by the physician, Hausdorff distance and overlap rate are respectively developed, the Hausdorff distances are within 30 mm in seven out of nine tests and the average value of overlap rate is 73.0% for all the tests. The puncturing paths of high safety and clinical-practice compliance can be provided by the proposed method, based on which the pretreatment planning software developed can apply to the interns' training and ability evaluating for thermal ablation surgery.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1469--1485
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
autor
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
autor
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
autor
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
autor
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
autor
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
Bibliografia
- [1] Zhu F, Rhim H. Thermal ablation for hepatocellular carcinoma: what's new in 2019. Chin Clin Oncol 2019;8 (6):58. http://dx.doi.org/10.21037/cco.2019.11.03.
- [2] Zhang R, Wu S, Wu W, Gao H, Zhou Z. Computer-assisted needle trajectory planning and mathematical modeling for liver tumor thermal ablation: a review. Math Biosci Eng 2019;16(5):4846–72. http://dx.doi.org/10.3934/mbe.2019244.
- [3] Palussière J, Catena V, Lagarde P, Cousin S, Cabart M, Buy X, et al. Primary tumors of the lung: should we consider thermal ablation as a valid therapeutic option? Int J Hyperth 2019;36(2):46–52. http://dx.doi.org/10.1080/02656736.2019.1647351.
- [4] Sim JS, Baek JH. Long-term outcomes following thermal ablation of benign thyroid nodules as an alternative to surgery: the importance of controlling regrowth. Endocrinol Metab 2019;34(2):117–23. http://dx.doi.org/10.3803/enm.2019.34.2.117.
- [5] Schullian P, Putzer D, Silva MA, Laimer G, Kolbitsch C, Bale R. Stereotactic radiofrequency ablation of liver tumors in octogenarians. Front Oncol 2019;9:929. http://dx.doi.org/10.3389/fonc.2019.00929.
- [6] Glassberg MB, Ghosh S, Clymer JW, Qadeer RA, Ferko NC, Sadeghirad B, et al. Microwave ablation compared with radiofrequency ablation for treatment of hepatocellular carcinoma and liver metastases: a systematic review and meta-analysis. Onco Targets Ther 2019;12:6407–38. http://dx.doi.org/10.2147/ott.s204340.
- [7] Verloh N, Jensch I, Lürken L, Haimerl M, Dollinger M, Renner P, et al. Similar complication rates for irreversible electroporation and thermal ablation in patients with hepatocellular tumors. Radiol Oncol 2019;53(1):116–22. http://dx.doi.org/10.2478/raon-2019-0011.
- [8] Wu M, Gao S, Song H, Zhang Z, Wang J, Liu R, et al. Percutaneous thermal ablation combined with simultaneous transarterial chemoembolization for hepatocellular carcinoma ≤ 5 cm. J Cancer Res Ther 2019;15 (4):766–72. http://dx.doi.org/10.4103/jcrt.jcrt_250_19.
- [9] Wang G, He X, Wang Y, Xu L, Huang H, Wang Y, et al. Clinical practice guideline for image-guided multimode tumour ablation therapy in hepatic malignant tumours. Curr Oncol 2019;26(5):e658. http://dx.doi.org/10.3747/co.26.5423.
- [10] Bailey CW, Sydnor MK. Current state of tumor ablation therapies. Dig Dis Sci 2019;64(4):951–8. http://dx.doi.org/10.1007/s10620-019-05514-9.
- [11] Huang Q, Zeng Q, Long Y, Tan L, Zheng R, Xu E, et al. Fusion imaging techniques and contrast-enhanced ultrasound for thermal ablation of hepatocellular carcinoma–a prospective randomized controlled trial. Int J Hyperth 2019;36(1):1206–14. http://dx.doi.org/10.1080/02656736.2019.1687945.
- [12] Paolucci I, Sandu RM, Tinguely P, Kim-Fuchs C, Maurer M, Candinas D, et al. Stereotactic image-guidance for ablation of malignant liver tumors. Liver cancer. London: IntechOpen; 2019. http://dx.doi.org/10.5772/intechopen.89722.
- [13] Perrodin S, Lachenmayer A, Maurer M, Kim-Fuchs C, Candinas D, Banz V. Percutaneous stereotactic imageguided microwave ablation for malignant liver lesions. Sci Rep 2019;9:13836. http://dx.doi.org/10.1038/s41598-019-50159-3.
- [14] An C, Li X, Zhang M, Yang J, Cheng Z, Yu X, et al. 3D visualization ablation planning system assisted microwave ablation for hepatocellular carcinoma (Diameter& 3): a precise clinical application. BMC Cancer 2020;20:44. http://dx.doi.org/10.1186/s12885-020-6519-y.
- [15] Cools KS, Moon AM, Burke LMB, McGinty KA, Strassle PD, Gerber DA. Validation of the liver imaging reporting and data system treatment response criteria after thermal ablation for hepatocellular carcinoma. Liver Transplant 2020;26(2):203–14. http://dx.doi.org/10.1002/lt.25673.
- [16] Yuan C, Wang Z, Gu D, Tian J, Zhao P, Wei J, et al. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram. Cancer Imaging 2019;19:21. http://dx.doi.org/10.1186/s40644-019-0207-7.
- [17] Torricelli M, Ferraguti F, Secchi C. An algorithm for planning the number and the pose of the iceballs in cryoablation. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2013. pp. 4949–52. http://dx.doi.org/10.1109/embc.2013.6610658.
- [18] Jaberzadeh A, Essert C. Pre-operative planning of multiple probes in three dimensions for liver cryosurgery: comparison of different optimization methods. Math Methods Appl Sci 2016;39(16):4764–72. http://dx.doi.org/10.1002/mma.3548.
- [19] Gong L, Yao C, Dong S, Zhao Y. The optimization of the treatment planning for achieving complete ablation of tumor during irreversible electroporation by genetic algorithm. 2017 IEEE 21st International Conference on Pulsed Power (PPC); 2017. pp. 1–6. http://dx.doi.org/10.1109/ppc.2017.8291223.
- [20] Chen R, Lu F, Wu F, Jiang T, Xie L, Kong D. An analytical solution for temperature distributions in hepatic radiofrequency ablation incorporating the heat-sink effect of large vessels. Phys Med Biol 2018;63(23):235026. http://dx.doi.org/10.1088/1361-6560/aaeef9.
- [21] Mariappan P, Weir P, Flanagan R, Voglreiter P, Alhonnoro T, Pollari M, et al. GPU-based RFA simulation for minimally invasive cancer treatment of liver tumours. Int J Comput Assist Radiol Surg 2017;12(1):59–68. http://dx.doi.org/10.1007/s11548-016-1469-1.
- [22] Hübner F, Schreiner R, Reimann C, Bazrafshan B, Kaltenbach B, Schüßler M, et al. Ex vivo validation of microwave thermal ablation simulation using different flow coefficients in the porcine liver. Med Eng Phys 2019;66:56–64. http://dx.doi.org/10.1016/j.medengphy.2019.02.007.
- [23] Gas P, Wyszkowska J. Influence of multi-tine electrode configuration in realistic hepatic RF ablative heating. Arch Electr Eng 2019;68(3):521–33. http://dx.doi.org/10.24425/aee.2019.129339.
- [24] Gas P, Miaskowski A. SAR optimization for multi-dipole antenna array with regard to local hyperthermia. Przeglad Elektrotechniczny 2019;95(1):17–20. http://dx.doi.org/10.15199/48.2019.01.05.
- [25] Gas P. Study on interstitial microwave hyperthermia with multi-slot coaxial antenna. Rev Roumaine Sci Tech–Serie Électrotech Énerg 2014;59(2):215–24. Avaiable at: http://www.revue.elth.pub.ro/upload/54022410PGas_pp. 215-224.pdf.
- [26] Hamzé N, Peterlík I, Cotin S, Essert C. Preoperative trajectory planning for percutaneous procedures in deformable environments. Comput Med Imaging Graph 2016;47:16–28. http://dx.doi.org/10.1016/j.compmedimag.2015.10.002.
- [27] Tan X, Yu P, Lim KB, Chui CK. Robust path planning for flexible needle insertion using Markov decision processes. Int J Comput Assist Radiol Surg 2018;13(9):1439–51. http://dx.doi.org/10.1007/s11548-018-1783-x.
- [28] Li P, Yang Z, Jiang S. Needle-tissue interactive mechanism and steering control in image-guided robot-assisted minimally invasive surgery: a review. Med Biol Eng Comput 2018;56(6):931–49. http://dx.doi.org/10.1007/s11517-018-1825-0.
- [29] Baegert C, Villard C, Schreck P, Soler L. Multi-criteria trajectory planning for hepatic radiofrequency ablation. Lecture Notes Comp Sci 2007;4792:676–84. http://dx.doi.org/10.1007/978-3-540-75759-7_82.
- [30] Seitel A, Engel M, Sommer CM, Radeleff BA, Essert-Villard C, Baegert C, et al. Computer-assisted trajectory planning for percutaneous needle insertions. Med Phys 2011;38 (6Part1):3246–59. http://dx.doi.org/10.1118/1.3590374.
- [31] Schumann C, Bieberstein J, Trumm C, Schmidt D, Bruners P, Niethammer M, et al. Fast automatic path proposal computation for hepatic needle placement. Med Image 2010: Visualiz Image-Guided Procedures Model Proc SPIE 2010;7625:76251J. http://dx.doi.org/10.1117/12.844186.
- [32] Schumann C, Rieder C, Haase S, Teichert K, Süss P, Isfort P, et al. Interactive multi-criteria planning for radiofrequency ablation. Int J Comput Assist Radiol Surg 2015;10(6):879–89. http://dx.doi.org/10.1007/s11548-015-1201-6.
- [33] Wang KF, Pan W, Wang KF, Wang GF, Madhava P, Pan HM, et al. Geometric optimization of a mathematical model of radiofrequency ablation in hepatic carcinoma. Asian Pacific J Cancer Prev 2013;14(10):6151–8. http://dx.doi.org/10.7314/apjcp.2013.14.10.6151.
- [34] Liu S, Xia Z, Liu J, Xu J, Ren H, Lu T, et al. Automatic multiple-needle surgical planning of robotic-assisted microwave coagulation in large liver tumor therapy. PLoS One 2016;11(3):e0149482. http://dx.doi.org/10.1371/journal.pone.0149482.
- [35] Liu SX, Dalal S, Kruecker J. Automated microwave ablation therapy planning with single and multiple entry points. Med Image 2012: Visualiz Image-Guided Procedures Model Proc SPIE 2012;8316:831635. http://dx.doi.org/10.1117/12.911316.
- [36] Ren H, Campos-Nanez E, Yaniv Z, Banovac F, Abeledo H, Hata N, et al. Treatment planning and image guidance for radiofrequency ablation of large tumors. IEEE J Biomed Health Inform 2014;18(3):920–8. http://dx.doi.org/10.1109/jbhi.2013.2287202.
- [37] Ren H, Guo W, Ge SS, Lim W. Coverage planning in computer-assisted ablation based on genetic algorithm. Comput Biol Med 2014;49:36–45. http://dx.doi.org/10.1016/j.compbiomed.2014.03.004.
- [38] Chen R, Jiang T, Lu F, Wang K, Kong D. Semiautomatic radiofrequency ablation planning based on constrained clustering process for hepatic tumors. IEEE Trans Biomed Eng 2017;65(3):645–57. http://dx.doi.org/10.1109/tbme.2017.2712161.
- [39] Liu P, Qin J, Duan B, Wang Q, Tan X, Zhao B, et al. Overlapping radiofrequency ablation planning and robotassisted needle insertion for large liver tumors. Int J Med Robot Comput Assist Surg 2019;15(1):e1952. http://dx.doi.org/10.1002/rcs.1952.
- [40] Liang L, Cool D, Kakani N, Wang G, Ding H, Fenster A. Automatic radiofrequency ablation planning for liver tumors with multiple constraints based on set covering. IEEE Trans Med Imaging 2019;39(5):1459–71. http://dx.doi.org/10.1109/tmi.2019.2950947.
- [41] Liang L, Cool D, Kakani N, Wang G, Ding H, Fenster A. Development of a multi-objective optimized planning method for microwave liver tumor ablation. Lecture Notes Comp Sci 2019;11768:110–8. http://dx.doi.org/10.1007/978-3-030-32254-0_13.
- [42] Li J, Wu Y, Shen N, Zhang J, Chen E, Sun J, et al. A fully automatic computer-aided diagnosis system for hepatocellular carcinoma using convolutional neural networks. Biocybern Biomed Eng 2020;40(1):238–48. http://dx.doi.org/10.1016/j.bbe.2019.05.008.
- [43] Cantarino I, Carrion MA, Goerlich F, Ibañez VM. A ROC analysis-based classification method for landslide susceptibility maps. Landslides 2019;16(2):265–82. http://dx.doi.org/10.1007/s10346-018-1063-4.
- [44] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques 1992;71–8. http://dx.doi.org/10.1145/133994.134011.
- [45] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. Ieee Trans Evol Comput 2002;6(2):182–97. http://dx.doi.org/10.1109/4235.996017.
- [46] D-IRCADb (3D Image Reconstruction for Comparison of Algorithms Database). http://www.ircad.fr/research/3dircadb/. [Accessed 16 Feb 2020].
- [47] GAMS - The Solver Manuals, GAMS Release 25.1.3, GAMS Development Corporation Washington, DC, USA, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adbc0527-ca9f-4a80-a1ba-8dcf51aa7d36