PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of isotropic constitutive laws in simulating failure mechanisms in scaled RC beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of numerical calculations of reinforced concrete (RC) beams are presented. Based on experimental results on longitudinally reinforced specimens of different sizes and shapes are investigated. Four different continuum constitutive laws with isotropic softening are used: one defined within continuum damage mechanics, an elasto-plastic with the Rankine criterion in tension and the Drucker–Prager criterion in compression, a formulation coupling elasto-plasticity and damage mechanics and the concrete damaged plasticity (CDP) model implemented in Abaqus. In a softening regime, a non-local theory of integral format is applied to the first three constitutive laws. A fracture energy approach is utilised in CDP model. An ability to reproduce different failure mechanisms observed in experiments for each constitutive model is analysed. A comparison of force-displacement curves and crack patterns between numerical and experimental outcomes is performed.
Rocznik
Strony
193--215
Opis fizyczny
Bibliogr. 45 poz., rys. kolor.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. P. Menétrey, K.J. Willam, Triaxial failure criterion for concrete and its generalization, ACI Structural Journal, 92, 3, 311–318, 1995.
  • 2. P.H. Feenstra, R. de Borst, A composite plasticity model for concrete, International Journal of Solids and Structures, 33, 5, 707–730, 1996.
  • 3. P. Pivonka, J. Ožbolt, R. Lackner, H. Mang, Comparative studies of 3D-constitutive models for concrete: application to mixed-mode fracture, International Journal for Numerical Methods in Engineering, 60, 2, 549–570, 2004.
  • 4. J. Mazars, A description of micro- and macroscale damage of concrete structures, Engineering Fracture Mechanics, 25, 5-6, 729–737, 1986.
  • 5. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, M.G.D. Geers, Gradient enhanced damage modelling of concrete fracture, Mechanics of Cohesive-Frictional Materials, 3, 323–342, 1998.
  • 6. R. de Borst, P. Nauta, Non-orthogonal cracks in a smeared finite element model, Engineering Computations, 2, 3, 35–46,1985.
  • 7. R. Desmorat, F. Gatuingt, F. Ragueneau, Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials, Engineering Fracture Mechanics, 74, 10, 1539–1560, 2007.
  • 8. J. Pamin, R. de Borst, Stiffness degradation in gradient-dependent coupled damage-plasticity, Archives of Mechanics, 51, 3-4, 419–446, 1999.
  • 9. G. Meschke, R. Lackner, H.A. Mang, An anisotropic elastoplastic-damage model for plain concrete, International Journal for Numerical Methods in Engineering, 42, 4, 702–727, 1998.
  • 10. P. Grassl, D. Xenos, U. Nystrom, R. Rempling, K. Gylltoft, CDPM2: a damage-plasticity approach to modelling the failure of concrete, International Journal of Solids and Structures, 50, 3805–3816, 2013.
  • 11. R. de Borst, L.J. Sluys, Localisation in a Cosserat continuum under static and dynamic loading conditions, Computer Methods in Applied Mechanics and Engineering, 90, 1-3, 805–827, 1991.
  • 12. J. Tejchman, E. Bauer, Numerical simulation of shear band formation with a polar hypoplastic constitutive model, Computers and Geotechnics, 19, 3, 221–244, 1996.
  • 13. G. Pijaudier-Cabot, Z.P. Bažant, Nonlocal damage theory, Journal of Engineering Mechanics ASCE, 113, 10, 1512–1533, 1987.
  • 14. Z.P. Bažant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress, ASCE Journal of Engineering Mechanics, 128, 11, 1119–1149, 2002.
  • 15. J. Pamin, Gradient-dependent Plasticity in Numerical Simulations of Localization Phenomena, PhD Thesis, Delft University of Technology, 1994.
  • 16. W.M. Wang, L.J. Sluys, R. de Borst, Viscoplasticity for instabilities due to strain softening and strain-rate softening, International Journal for Numerical Methods in Engineering, 40, 20, 3839–3864, 1997.
  • 17. M. Ortiz, A. Pandolfi, Finite-deformation irreversible cohesive elements for three- dimensional crack propagation analysis, International Journal for Numerical Methods in Engineering, 44, 9, 1267–1282, 1999.
  • 18. F. Zhou, J.F. Molinari, Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency, International Journal for Numerical Methods in Engineering, 59, 1, 1–24, 2004.
  • 19. G.N. Welss, L.J. Sluys, A new method for modelling cohesive cracks using finite elements, International Journal for Numerical Methods in Engineering, 50, 12, 2667–2682, 2001.
  • 20. N. Moes, T. Belytschko, Extended finite element method for cohesive crack growth, Engineering Fracture Mechanics, 69, 7, 813–833, 2002.
  • 21. K. Dörr, Ein Bertrag zur Berechnung von Stahlbetonscheiben unter besonderer Berücksichtigung des Verbundverhaltens, Dissertation, Darmstadt Universität, 1980.
  • 22. J.V. Cox, L.R. Herrmann, Development of a plasticity bond model for steel reinforcement, Mechanics of Cohesive-Frictional Materials, 3, 2, 155–180, 1998.
  • 23. T. Małecki, I. Marzec, J. Bobiński, J. Tejchman, Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension, Mechanics Research Communications, 34, 5-6, 460–465, 2007.
  • 24. A. Wosatko, J. Pamin, M.A Polak, Application of damage–plasticity models in finite element analysis of punching shear, Computers & Structures, 151, 73–85, 2015.
  • 25. D. Xenos, P. Grassl, Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damage-plasticity model CDPM2, Finite Elements in Analysis and Design, 117-118, 11–20, 2016.
  • 26. J. Oliver, D.L. Linero, A.E. Huespe, O.L. Manzoli, Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach, Computer Methods in Applied Mechanics and Engineering, 197, 5, 332–348, 2008.
  • 27. J. Suchorzewski, E. Korol, J. Tejchman, Z. Mróz, Experimental study of shear strength and failure mechanisms in RC beams scaled along height or length, Engineering Structures, 157, 203–233, 2018.
  • 28. L. Pereira, J. Weerheijm, L.A. Sluys, A numerical study on crack branching in quasi- brittle materials with a new effective rate-dependent nonlocal damage model, Engineering Fracture Mechanics, 182, 689–707, 2017.
  • 29. L. Pereira, J. Weerheijm, L.A. Sluys, Simulation of compaction and crushing of concrete in ballistic impact with a new damage model, International Journal of Impact Engineering, 111, 208–221, 2018.
  • 30. J. Lee, G.L. Fenves, Plastic-damage model for cyclic loading of concrete structures,Journal of Engineering Mechanics ASCE, 124, 8, 892–900, 1998.
  • 31. J. Mazars, F. Hamon., S. Grange, A model to forecast the response of concrete under severe loadings the μ damage model, Procedia Materials Science, 3, 979–984, 2014.
  • 32. J. Mazars, F. Hamon., S. Grange, A new 3d damage model for concrete under monotonic, cyclic and dynamic load, Materials and Structures, 48, 3779–3793, 2015.
  • 33. P.E. Petersson, Crack growth and formation of fracture zones in plain concrete and similar materials, Report TVBM-3005, Division of Building Materials, Lund University of Technology, 1981.
  • 34. D.A. Hordijk, Local Approach to Fatigue of Concrete, Ph.D. Thesis, Delft University of Technology, Delft, 1991.
  • 35. J. Bobiński, J. Tejchman, A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and eXtended Finite Element Method, Finite Elements in Analysis and Design, 114, 1–21, 2016.
  • 36. J. Bobiński, J. Tejchman, Comparison of continuous and discontinuous constitutive models to simulate concrete behaviour under mixed-mode failure conditions, International Journal for Numerical and Analytical Methods in Geomechanics, 40, 3, 406–435, 2016.
  • 37. I. Marzec, J. Tejchman, Computational modelling of concrete behaviour under static and dynamic conditions, Bulletin of the Polish Academy of Sciences-Technical Sciences, 61, 1, 85–95, 2013.
  • 38. Ł. Skarżyński, I. Marzec, J. Tejchman, Experiments and numerical analyses for composite RC-EPS slabs, Computers and Concrete, 20, 6, 689–704, 2017.
  • 39. I. Marzec, J. Tejchman, Z. Mróz, Numerical analysis of size effect in RC beams scaled along height or length using elasto-plastic-damage model enhanced by non-local softening, Finite Elements in Analysis and Design, 157, 1–20, 2019.
  • 40. M.G.D. Geers, Experimental Analysis and Computational Modeling of Damage and Fracture, PhD Thesis, Eindhoven University of Technology, 1997.
  • 41. Abaqus Documentation. Dassault Systemes, 2016.
  • 42. J. Lubliner, J. Oliver, S. Oller, E. Onate, A plastic-damage model for concrete, International Journal of Solids and Structures, 25, 3, 229–326, 1989.
  • 43. R.B.J. Brinkgreve, Geomaterial Models and Numerical Analysis of Softening, PhD Thesis, Delft University of Technology, 1994.
  • 44. Z. Bazant, B. Oh, Byung, Crack band theory for fracture of concrete, Matériaux et Constructions, 16, 155–177, 1983.
  • 45. I. Marzec, J. Tejchman, A. Winnicki, Computational simulations of concrete be- haviour under dynamic conditions using elasto-visco-plastic model with non-local softening, Computers and Concrete. 15, 4, 515–545, 2015.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adb4bc84-054f-48c7-bd75-6a9371fd109f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.