PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Content of Heavy Metals in Reclaimed Soil Material and Hard Coal ash 15 Years After the Experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper the results obtained during hard coal ash reclamation. This model was created by covering the ash surface with the layers consisting of ash, organic by-products and mineral fertilizers. The aim of the studies, undertaken 15 years after the experiment set up, was the assessment of the efficacy of ash waste reclamation on the basis of the overall and solubility analyses of the metal content, including heavy metals, soluble in 1 M HCl. In 2003, on the premises of Dolna Odra Power Station in Nowe Czarnowo (53,20°N; 14,48°E) near Gryfino (53,25°N; 14,48°E) in Poland, a hard coal ash reclamation experiment was conducted. A 40 cm thick surface layer (fertile), termed upperlay, composed of the mixture of various materials was applied to ash substrate. One part was fertilized with mineral fertilizers NPK-60–70–70, the other was left unfertilized. After 15 years, in the autumn of 2018, the samples of upperlays (0–40 cm) and underlays (40–60 cm) were collected from plots overgrown with grass. Fifteen years after the experiment, none of the underlays or upperlays showed an excess of threshold values, as specified in the current Regulation of the Minister of the Environment of 2016. The particularly favourable effect was identified with respect to the application of fermented municipal sewage sludge and GWDA compost which were factors resulting in a decrease of the upperlay content of cadmium, zinc, copper and lead in the form available for plants. The characteristics of upperlays with respect to metal content indicate the conditions favourable to plant cultivation on the reclaimed area. The recorded results on the change of the overall and bioavailable content of metals in upperlays and underlays justify the continuation of the undertaken reclamation experiment.
Słowa kluczowe
Rocznik
Strony
59--65
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71‑434 Szczecin, Poland
  • Department of Environmental Management, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71‑434 Szczecin, Poland
  • Department of Agroengineering, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 3, 71‑459 Szczecin, Poland
  • Department of Environmental Management, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71‑434 Szczecin, Poland
  • Department of Environmental Management, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71‑434 Szczecin, Poland
Bibliografia
  • 1. Antonkiewicz J. 2007. Effect of ash-and-sludge and ash-and-peat blends on yield of grass-birdsfoot trefoil mixture and levels of selected elements in mixture. (in Polish). Acta Scientiarum Polonorum Formatio Circumiectus, 6(3), 61–72.
  • 2. Chaney, R.L., 2010. Cadmium and Zinc. In: Hooda P (ed) Trace elements in soils. John Wiley & Sons, Ltd, Chichester, UK, 1–596. doi.org/10.1002/9781444319477.ch17.
  • 3. DIN-R-04016:1992. Chemical and agricultural analysis of soil. Determination of absorbable zinc content. (in Polish).
  • 4. DIN-R-04017:1992. Chemical and agricultural analysis of soil. Determination of absorbable copper content. (in Polish).
  • 5. DIN-R-04021:1994. Chemical and agricultural analysis of soil. Determination of absorbable iron content. (in Polish).
  • 6. Greinert A. 2011. Cobalt in the natural and anthropogenic environment. (in Polish). Ed. Uniwersytet Zielonogórski Zielona Góra 1–133. doi: 10.13140/2.1.2292.5764.
  • 7. Hill T., Lewicki P. 2006. Statistics: Methods and Applications: A comprehensive reference for science, industry, and data mining. StatSoft, Inc. 832.
  • 8. Ibragimow A., Głosińska G., Siepak M., Walna B. 2010. Preliminary study of heavy metal pollution in the floodplain sediments of the Lubusz OderGap. (in Polish). Prace i Studia Geograficzne 44, 233–247.
  • 9. ISO 10390:2005. Soil quality – Determination of pH. International Organization for Standardization.
  • 10. ISO 18400–102:2017 – Soil quality – Sampling – Part 102: Selection and application of sampling techniques.
  • 11. Jalali M., Khanlari Z.V., 2006. Mobility and Distribution of Zinc, Cadmium and Lead in Calcareous Soils Receiving Spiked Sewage Sludge. Soil & Sediment Contamination, 15, 603–620.
  • 12. Journal of Laws of 2016, item 1395 – Regulation of the Minister of the Environment of 1 September 2016 on the conduct of the assessment of contamination of the surface of the earth.
  • 13. Journal of Laws of 2020, item 10 – Regulation of the Minister of Climate of 2 January 2020 on the waste catalog.
  • 14. Kabała C., Karczewska A. 2019. Methodology of laboratory analyzes of soils and plants. (in Polish) Ed. 8a. Wrocław.
  • 15. Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Łabaz B., Łachacz A., Marzec M., Mendyk Ł., Musiał P., Musielok Ł., Smreczak B., Sowiński P., Świtoniak M., Uzarowicz Ł., Waroszewski J. 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97. doi: 10.2478/ssa-2019–0009.
  • 16. Kabata-Pendias A., 2011. Trace elements in soil and plants. (Ed.), 4. CRC Press, Taylor & Francis 280, 253–254.
  • 17. Korzeniowska J., Stanisławska-Glubiak E., Lipiński W. 2020. New limit values of micronutrient deficiency in soil determined using 1 M HCl extractant for wheat and rapeseed. Soil Science Annual 71(3), 205–214. doi.org/10.37501/soilsa/126079.
  • 18. Lipiński W. 2013. Zasobność gleb polski w mikroelementy. (in Polish). Studia i raporty IUNG-PIB 34(8), 121–131. doi: 10.26114/sir.iung.2013.34.09.
  • 19. Liu H., Zhao P., Qin S., Nie Z. 2018. Chemical Fractions and Availability of Zinc in Winter Wheat Soil in Response to Nitrogen and Zinc Combinations. Frontiers Plant Science 9, 1489–1515. doi:10.3389/fpls.2018.01489.
  • 20. Millaleo R., Reyes-Diaz M., Ivanov A.G., Mora M.L., Alberdi M. 2010. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science Plant Nutrition. 10(4), 470–481. doi.org/10.4067/S0718–95162010000200008.
  • 21. Parzentny H., Róg L. 2017. Evaluation of the value of some petrographic, physico-chemical and geochemical indicators, coal quality in the paralic series of the Upper Silesian Coal Basin and an attempt to find the correlation between them. (in Polish). Mineral Resources Management, 33(1), 51–76. doi 10.1515/gospo-2017–0004.
  • 22. Renoux A.Y., Rocheleau S., Sarrazin M., Sunahara G.I., Blais J.F. 2007. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms. Environmental Pollution, 145, 41–50.
  • 23. Siebielec G. 2012. Monitoring of the chemistry of arable soils in Poland in the years 2010–2012. (in Polish). Inspekcja Ochrony Środowiska, Warszawa 1–200.
  • 24. Wuana R.A., Okieimen F.E. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Notices 1–20. doi.org/10.5402/2011/402647.
  • 25. Yu Y., Wang Y.N., Wang Q., Li H.F. 2017. Effect of humic acid-based amendments with foliar application of Zn and Se on Cd accumulation in tobacco. Ecotoxicology and Environmental Safety, 138, 286–291.
  • 26. www.gios.gov.pl/chemizm_gleb/index.php?mod=wyniki&cz=G. dostęp 02.02.2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adb09863-a101-4109-9536-2ce9ac9abde5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.