PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison analysis of cockroft – latham criterion values of commercial plasticine and C45 steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents and compares the results of theoretical and experimental research in the field of cracking of model material (commercial plasticine) and C45 steel in hot forming conditions. The aim of the research was to determine the limit values of the CockroftLatham integral for both materials. The presented research methodology includes experimental tests (tensile tests) and numerical simulations carried out in the DEFORM-3D program. For laboratory tests, axially symmetric samples made of C45 steel and model material were used. On the basis of the obtained experimental and numerical results, a comparative analysis of both materials was carried out.
Rocznik
Strony
286--293
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Lublin University of Technology, Mechanical Engineering Faculty, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Lublin University of Technology, Mechanical Engineering Faculty, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Altan T., Breitling J., Taupin E., Wu W-T. (1996), Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments,Journal of Materials Processing Technology, 58, 68-78.
  • 2. Altan T., Vazquez V., (2000), New Concepts in die design - physical and computer modeling applications, Journal of Materials Processing Technology, 98, 212-223.
  • 3. Antolik Ł., (2014), Methodology of Fatigue Cracks Detection in Railway Axles in Comparison with European Standards Requirements (in Polish),Problemy kolejnictwa, 165, 7-19.
  • 4. Arikawa T., Kakimoto H., (2014), Prediction of surface crack in hot forging by numerical simulation, Procedia Engineering, 81, 474-479.
  • 5. Asai K., Kitamura K., (2014), Estimation of frictional property of lubricants for hot forging of steel using low-speed ring compression test, Procedia Engineering, 81,1970-1975.
  • 6. Assempour A., Farahani S., Naybodi A., (2012). A general methodology for bearing design in non-symmetric T-shaped sections in extrusion process, Journal of Materials Processing Technology, 212(1), 249-261.
  • 7. Assempour A., Razi S., (2002). Determination of load and strainstress distributions in hot closed die forging using the plasticine modeling technique, Archive of SID, 2(15), 167-172.
  • 8. Bariani P.F., Bylya O., Ghiotti A. ,Novella M.F., (2014), Modelling of AA6082 Ductile Damage Evolution under Hot Rolling Conditions, Procedia Engineering, 81, 221-226.
  • 9. Bruschi S., Davey K., Krishnamurthy B., (2017), Physical modelling for metal forming processes, Procedia Engineering, 207, 1075-1080.
  • 10. Charoesunk K., Panich S., Uthaisangsuk V., (2017). Damage initiation and fracture loci for advances high strength steel sheets taking into account anisotropic behaviour. Journal of Materials Processing Technology, 248, 218-235.
  • 11. Cherkashina T., Mazur I., (2012), Mathematical and Physical Modeling of Soft Cobbing Process of Hot Rolling Steels, Material Science Forum, 704-705, 160-164.
  • 12. Cockroft M.G., Latham D.J, (1968). Ductility and the workability of metals,Journal of the Institute of Metals, 96, 33-39.
  • 13. Derpenski L., Seweryn A.,Szusta J., (2018), Damage accumulation and ductile fracture modeling of notched specimens under biaxial loading at room temperature, International Journal of Solids and Structures, 134, 1-19.
  • 14. Dziubinska A., Gontarz A., (2015), A new method for producing magnesium alloy twin-rib aircraft brackets, Aircraft Engineering and Aerospace Technology, 2(87), 180-188.
  • 15. Eivani A. R., Jafarian H. R.,Mirghasemi S. M., Seyedein S. H. (2018), A comparison between routine vs. normalized CockroftLatham Fracture criteria for prediction of fracture during equal channel angular pressing,Engineering Fracture Mechanics, 199, 721-729.
  • 16. Fu M. W., Li H., Lu J., Yang H., (2011), Ductile fracture: Experiments and computations,International Journal of Plasticity, 27, 147-180.
  • 17. Fuertes J. P., León J., Luis C. J., Luri R., Puertas I., Salcedo D., (2015), Comparative study of the damage attained with different specimens by FEM,Procedia Engineering, 132, 319-325.
  • 18. Galan I. S., Perig A.V., (2017), The experimental verification of the known flow line models describing local flow during ECAE (ECAP), Letters on materials, 7(3), 209-217.
  • 19. Gontarz A., Piesiak J., (2010), Crack model according to CockroftLatham criterion for magnesium alloy MA2 in hot forming conditions (in Polish), XXI(4), 217-227.
  • 20. Gontarz A., Winiarski G., (2015), Numerical and experimental study of producing flanges on hollow parts by extrusion with a movable sleeve, Archives of Metallurgy and Materials, 60, 1917-1921.
  • 21. Kowalczyk L., (1995), Physical modeling of metal forming processes (in Polish),Technologii Eksploatacji, Radom.
  • 22. Lis K., Pater Z., Walczuk P., Wojcik L.,(2018), Preliminary analysis of a rotary compression test, Adv. Sci. Technol. Res. J, 12 (2), 77-82.
  • 23. Lis K., Pater Z., Wojcik L.,(2016), Plastometric tests for plasticine as physical modelling material, Open Engineering, 6, 653-659.
  • 24. Mizuno K., Komori K., (2009), Study on plastic deformation in conetype rotary piercing process using model piercing mill for modeling clay, Journal of Materials Processing Technology, 209, 4994-5001.
  • 25. Moon Y.H., Van Tyne C.J., (2000), Validation via FEM and plasticine modeling of upper bound criteria of a process induced side surface defect in forgings, Journal of Materials Processing Technology, 99, 185-196
  • 26. Pater Z., Wojcik L.,(2017), Physical analysis of cross-wedge rolling process of a stepped shaft,Adv. Sci. Technol. Res. J. ,11 (4), 60-67.
  • 27. Pieres F. M. A., Song N., Wu S., (2016), Numerical analysis of damage evolution form materials with tension - compression asymmetry, Procedia Structural Integrity, 1, 273-280.
  • 28. Rasty J., Sofuoglu H., (2000), Flow behaviour of plasticine used in physical modeling of metal forming process, Tribology International, 33, 523-529.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-adac611e-91d8-4dd1-8f65-b46fae123466
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.