Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mangroves grow on the coast of large to small islands with unique ecology, known as a source of potential bioactive compounds. This study aims to evaluate the toxicity and potential bioactive compounds from leaf extracts of Rhizophora apiculata and Bruguiera sexangula growing on two small islands with different habitats, namely Payung Island and Maspari Island on the coast of South Sumatra. A total of 1,000 grams of leaf samples of R. apiculata and B. sexangula were taken from both islands and then dried in the sun using the indirect sunlight method covered with black cloth. A total of 100 grams of fine powdered leaf samples were macerated in 96% ethanol with a ratio of 1:10 (b/v) for 24 hours. Then the maceration solution was filtered and evaporated to a concentrated extract using a rotary evaporator at 60 °C. Toxicity testing of extracts using the Brine Shrimp Lethality Test (BSLT) method, and identification of toxic bioactive compounds in extracts, is done through phytochemical tests, total phenols, and GC-MS analysis. The test results showed that leaf extracts of R. apiculata and B. sexangula from Payung Island showed higher toxicity than those from Maspari Island, with LC50 values of 407 μg/mL and 337 μg/mL, respectively (medium toxic category), while those from Maspari Island were 654 μg/mL and 868 μg/mL (weak toxic category). Total phenolics in leaf extracts from Payung Island were recorded at 168.06 gGA/g for R. apiculata and 529.46 gGA/g for B. sexangula. Phytochemical tests identified the presence of alkaloids, saponins and terpenoids in both types of extracts from Payung Island, while GC-MS analysis revealed 20 bioactive compounds in R. apiculata extracts and 3 compounds in B. sexangula that have the potential as source of bioactive compounds for health and pharmacology.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
134--146
Opis fizyczny
Bibliogr. 85 poz., rys., tab.
Twórcy
autor
- Program of Environmental Management, Graduate Program, Universitas Sriwijaya. Jl. Padang Selasa No. 524, Palembang 30139, South Sumatra, Indonesia
autor
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km. 32, Ogan Ilir 30862, South Sumatra, Indonesia
autor
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km. 32, Ogan Ilir 30862, South Sumatra, Indonesia
autor
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sriwijaya University. Jl. Raya Palembang-Prabumulih Km. 32, Ogan Ilir 30862, South Sumatra, Indonesia
autor
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km. 32, Ogan Ilir 30862, South Sumatra, Indonesia
autor
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km. 32, Ogan Ilir 30862, South Sumatra, Indonesia
Bibliografia
- 1. Abdullah B.M., Mehdi M.A.H., Khan A.R., Pathan J.M. (2020). Gas chromatography-mass spectrometry (GC-MS) analysis of ajwain (Trachyspermum ammi) seed extract. International Journal of Pharmaceutical Quality Assurance 11(2): 228–231.
- 2. Abubakar M.N., Majinda R.R.T. (2016). GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines MDPI 3(1): 3. https://doi.org/10.3390/medicines3010003
- 3. Albuquerque B.R., Heleno S.A., Oliveira M.B.P.P., Barros L., Ferreira I.C.F.R. (2021). Phenolic compounds: Current industrial applications, limitations and future challenges. Food & function Royal Society of Chemistry 12(1): 14–29. https://doi.org/10.3390/medicines3010003
- 4. Annashr N.N., Sari A. P., Saraswati D. (2024). Effectiveness extract larvacides of kecombrang flower (Etlingera elatior) on death of aedes aegypti mosquito larvae. Miracle Get Journal, 1(4), 16–25. https://doi.org/10.69855/mgj.v1i4.53
- 5. Anyasor G.N., Funmilayo O., Odutola O., Olugbenga A., Oboutor E.M. 2015. Evaluation of Costus afer Ker Gawl. in vitro anti-inflammatory activity and its chemical constituents identified using gas chromatography-mass spectrometry analysis. Journal of Coastal Life Medicine 3(2): 132–138. https://doi.org/10.12980/JCLM.3.2015APJTB-2014-0186
- 6. Belmessieri D., Gozlan C., Duclos M.-C., Molinier V., Aubry J.M., Dumitrescu O., Lina G., Redl A., Duguet N., Lemaire M. 2017. Synthesis, surfactant properties and antimicrobial activities of methyl glycopyranoside ethers. European Journal of Medicinal Chemistry Elsevier 128: 98–106. https://doi.org/10.1016/j.ejmech.2017.01.038
- 7. Bui N.T., Pham T.L.T., Nguyen K.T., Le P.H., Kim, K.H. 2021. Effect of extraction solvent on total phenol, flavonoid content, and antioxidant activity of Avicennia officinalis. Res. Appl. Chem 12: 2678–2690. https://doi.org/10.1016/j.ejmech.2017.01.038
- 8. Cheng L., Ji T., Zhang M., Fang B. (2024). Recent advances in squalene: Biological activities, sources, extraction, and delivery systems. Trends in Food Science & Technology 146: 104392. https://doi.org/10.1016/j.tifs.2024.104392
- 9. Chenniappan J., Sankaranarayanan A., Arjunan S. (2020). Evaluation of antimicrobial activity of Cissus quadrangularis L. stem extracts against Avian Pathogens and Determination of its Bioactive Constituents using GC-MS. J. Sci. Res 64(1): 90–96. https://doi.org/10.37398/JSR.2020.640113
- 10. Chitra J., Ali M.S., Anuradha, V. (2019). Identification of bioactive compounds in the crude bark extract of Rhizophora mucronata by GCMS analysis and HPTLC fingerprinting of the C. Universal Review, 8(6), 31–33.
- 11. Clarkson C., Maharaj V. J., Crouch N.R., Grace O.M., Pillay P., Matsabisa M.G., Bhagwandin N., Smith P.J., Folb P.I. (2004). In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. Journal of Ethnopharmacology 92(2): 177–191. https://doi.org/10.1016/j.jep.2004.02.011
- 12. De Alencar D.B., Da Silva S. R., Pires-Cavalcante K.M.S., De Lima R.L., Pereira F.N., De Sousa M.B., Viana F.A., Nagano C.S., Do Nascimento K.S., Cavada B.S., Sampaio A.H., Saker-Sampaio S. (2014). Antioxidant potential and cytotoxic activity of two red seaweed species, amansia multifida and meristiella echinocarpa, from the coast of Northeastern Brazil. Anais Da Academia Brasileira de Ciencias, 86(1): 251–263. https://doi.org/10.1590/0001-37652014116312
- 13. Ekalu A., Ayo R.G., Habila J., Hamisu İ. 2019. Bioactivity of phaeophytin A, α-amyrin and lupeol from Brachystelma togoense Schltr. Journal of the Turkish Chemical Society Section A: Chemistry Turkish Chemical Society 6(3): 411–418. https://doi.org/10.18596/jotcsa. 571770
- 14. Ellison J.C. 2021. Factors influencing mangrove ecosystems. Mangroves: Ecology, Biodiversity and Management Springer 97–115. https://doi.org/10.1007/978-981-16-2494-0_4
- 15. Eswaraiah G., Peele K.A., Krupanidhi S., Kumar R.B., Venkateswarulu T.C. (2020). Studies on phytochemical, antioxidant, antimicrobial analysis and separation of bioactive leads of leaf extract from the selected mangroves. Journal of King Saud University - Science The Authors 32(1): 842–847. https://doi.org/10.1016/j.jksus.2019.03.002
- 16. Fadilah R., Sukainah A., Taufieq N.A.S., Putra R.P., Adriani M. (2023). Analysis of Bioactive Compounds Content and Toxicity Test on Mangrove Leaf Extract. IOP Conference Series: Earth and Environmental Science, 1209(1): 12016. https://doi.org/10.1088/1755-1315/1209/1/012016
- 17. Ganesh S., Thiraviyam P., Ragul G., Kamala K., Ganapathy D., Sivaperumal P. (2024). Integrated phytochemical characterization and biological activityassessment of Rhizophoraapiculata Leaf Extract: Anti-inflammatory, Antioxidant, and Antibacterial Potentials. Nanotechnology Perceptions 728–740. https://doi.org/10.62441/nano-ntp.v20iS10.54
- 18. Gololo S. S., Mapfumari N.S., Mogale, M. A. (2018). Comparative quantitative phytochemical analysis of the leaves of Senna italica collected from different areas in Limpopo province, South Africa. International Journal of Pharmacy and Pharmaceutical Sciences 67–71. https://doi.org/10.22159/ijpps.2018v10i2.22950
- 19. Gopu C., Chirumamilla P., Daravath S.B., Vankudoth S., Taduri S. (2021). GC-MS analysis of bioactive compounds in the plant parts of methanolic extracts of Momordica cymbalaria Fenzl. J. Med. Plants Stud 9(3): 209–218. https://doi.org/10.22271/plants.2021.v9.i3c.1289
- 20. Gyesi J.N., Opoku R., Borquaye L.S. (2019). Chemical composition, total phenolic content, and antioxidant activities of the essential oils of the leaves and fruit pulp of Annona muricata L.(Soursop) from Ghana. Biochemistry research international Wiley Online Library 2019(1): 4164576. https://doi.org/10.1155/2019/4164576
- 21. Harlan J. (2018). Analisis Regresi Linear. Journal of Chemical Information and Modeling.
- 22. Hermialingga S., Suwignyo R.A., Ulqodry T.Z. (2020). Carbon storage estimation in mangrove sediment at Payung Island, South Sumatera. Sriwijaya Journal of Environment 5(3): 178–184. https://doi.org/10.22135/sje.2020.5.3.178-184
- 23. Hussein H.M., Ubaid J.M., Hameed I.H. (2016). Inscticidal activity of methanolic seeds extract of Ricinus communis on adult of callosobruchus maculatus (coleopteran: brauchidae) and analysis of its phytochemical composition. International journal of pharmacognosy and phytochemical research 8(8): 1385–1397.
- 24. Islam S., Millat M.S., Hussain M.S., Rahman M.A., Moghal M.M.R., Nipa J.A., Hasan I., Hossain M. (2017). Elucidation of in-vitro thrombolytic, membrane stabilizing, cytotoxic activities and phytochemical nature of Bruguiera cylindrica leaves. Biology, Engineering, Medicine and Science Reports, 3(1). https://doi.org/10.5530/PTB.2017.3.2
- 25. Jasna T.K, Khaleel K.M. (2020). GC-MS analysis of bioactive components of Kandelia Candel (L.) Druce. Journal of Advanced Scientific Research 11(4 Suppl 9): 193–197.
- 26. Juang Y.P., Liang P.H. (2020). Biological and pharmacological effects of synthetic saponins. Molecules MDPI 25(21): 4974. https://doi.org/10.3390/molecules25214974
- 27. Anu K., Parveen K.H., Sneha V.K., Busheera P., Muhammed J., Augustine A. (2024). Mangroves in environmental engineering: Harnessing the multifunctional potential of nature’s coastal architects for sustainable ecosystem management. Results in Engineering 21: 101765. https://doi.org/10.1016/j.rineng.2024.101765
- 28. Kadhim M.J., Mohammed G.J., Hameed I.H. (2016). In vitro antibacterial, antifungal and phytochemical analysis of methanolic extract of fruit Cassia fistula. Oriental Journal of Chemistry Oriental Scientific Publishing Company 32(3): 1329.
- 29. Kalpana M., Raguvaran K., Manimegalai T., Kalaivani S., Devapriya P., Maheswaran R. (2024). Actinobacteria mediated synthesis of silver nanoparticles using Streptomyces diastaticus and their biological efficacy against human vector mosquitoes and agricultural insect pests. Journal of Natural Pesticide Research 10: 100091. https://doi.org/10.1016/j.napere.2024.100091
- 30. Kannappan S., Sivakumar K., Sethi S. (2018). Protective effect of mangrove (Rhizophora apiculata) leaves extract in shrimp (Penaeus monodon) larvae against bio-luminescent disease-causing Vibrio harveyi bacteria. Spanish Journal of Agricultural Research, 16(1): 10.
- 31. Karga T. (2023). Phytochemical analysis of Rhizophora apiculata leaf and root extract and its inhibitory action against staphylococcus aureus. Pseudomonas aeruginosa and Escherichia coli.
- 32. Karim M.A., Islam M.A., Islam M.M., Rahman M.S., Sultana S., Biswas S., Hosen M.J., Mazumder K., Rahman M.M., Hasan M.N. (2020). Evaluation of antioxidant, anti-hemolytic, cytotoxic effects and anti-bacterial activity of selected mangrove plants (Bruguiera gymnorrhiza and Heritiera littoralis) in Bangladesh. Clinical Phytoscience, 6: 1–12. https://doi.org/10.1186/s40816-020-0152-9
- 33. Khan I.A., Khan S., Bilal H. (2024). Qualitative phytochemical screening of Buddleja crispa (roots and stem). Phytopharmacology Research Journal 3(1): 1–7.
- 34. Khotimah N.N., Putri W.A.E., Aryawati R., Nugroho, R. Y. (2024). Bioaccumulation and Ecological Risk Assessment of Heavy Metal Contamination (Lead and Copper) Build Up in the Roots of Avicennia alba and Excoecaria agallocha. Journal of Ecological Engineering 25(5). https://doi.org/10.12911/22998993/185716
- 35. Kumar S., Radhakrishnan S., Balasubramanian A., Radha P., Hariprasath, C.N. (2022). Metabolite profiling in heartwood of farm-grown Pterocarpus santalinus using GC-MS. Pharm Innov J (7): 4198–4202.
- 36. Laith, A.A. (2021). Phytochemical analysis and antimicrobial activities of mangrove plant (Rhizophora apiculata) against selected fish pathogenic bacteria. IOP Conference Series: Earth and Environmental Science 718(1). https://doi.org/10.1088/1755-1315/718/1/012076
- 37. Lakshmanan V., Thangaraj M., Ponnusamy B., Santhirakasan S., Kannan R., Regunathan U., Selvaraj S. (2019). Antibacterial activity of Rhizophora apiculata leaf extract for the management of rice bacterial blight disease.
- 38. Lakshmanrao N., Goa B., Kumar K., Pilani B., Birla Goa K.K. (2018). Mangrove plants as a source of bioactive compounds: A review. ingentaconnect.com. https://doi.org/10.2174/2210315508666180910125328
- 39. Lalitha P., Parthiban A., Sachithanandam V., Purvaja R., Ramesh R. (2021). Antibacterial and antioxidant potential of GC-MS analysis of crude ethyl acetate extract from the tropical mangrove plant Avicennia officinalis L. South African Journal of Botany Elsevier 142: 149–155. https://doi.org/10.1016/J.SAJB.2021.06.023
- 40. Lestari S., Kurnia D., Mayanti T., Heliawati L. (2024). Antimicrobial activities of stigmasterol from piper crocatum in Vitro and In Silico. Journal of Chemistry Wiley Online Library 2024(1): 2935516. https://doi.org/10.1155/2024/2935516
- 41. Machana S., Vongsak B., Chonanan C., Nuengsean B. (2017). Anti-elastase, anti-tyrosinase and antioxidant activity of Thai Mangrove Plants (Connarus semidecandrus, Bruguiera sexangula and Intsia bijuga). TJPS 41(2017).
- 42. Mahalakshmi G., Vengadeshkumar L., Sanjaygandhi S., Rajamohan K., Udhayakumar R., Sharmila A.M. (2020). Antifungal activity of Rhizophora apiculata against Alternaria solani.
- 43. Mande A., Malothu N., Areti A.R., Guntupalli C. (2023). Evaluation of antidepressant and nootropic activities of leaf extracts of Rhizophora apiculata. Egyptian Pharmaceutical Journal.
- 44. Maulana D.M., Sasmito B.B. (2021). The dose effect of mangrove leaf extract (Rhizophora apiculata) on Anticancer Activity in HeLa Cells. Journal of SCRTE 5(1). https://doi.org/10.20473/jscrte. v5i1.29380
- 45. Mickymaray S., Al Aboody M.S., Rath P.K., Annamalai P., Nooruddin T. (2016). Screening and antibacterial efficacy of selected Indian medicinal plants. Asian Pacific Journal of Tropical Biomedicine Elsevier 6(3): 185–191. https://doi.org/10.1016/j.apjtb.2015.12.005
- 46. Mitra S., Naskar N., Chaudhuri P. (2021). A review on potential bioactive phytochemicals for novel therapeutic applications with special emphasis on mangrove species. Phytomedicine Plus 1(4): 100107. https://doi.org/10.1016/j.phyplu.2021.100107
- 47. Mitra S., Naskar N., Lahiri S., Chaudhuri P. (2023). A study on phytochemical profiling of Avicennia marina mangrove leaves collected from Indian Sundarbans. Sustainable Chemistry for the Environment 4: 100041. https://doi.org/10.1016/j.scenv.2023.100041
- 48. Mohamed A.K.I.S.A.K.W. (2019). Chemical Constituents and Antimicrobial Activity of Saudi Prunus Mahaleb L. (Rosaceae) Seeds. 5(6): 29–34.
- 49. Moniharapon D.D., Ukratalo A M., Hendrajid Z., Ramadhany M.R. (2020). Biolarvicide of Herba Ethanol Extract of Phyllanthus niruri L on Aedes aegypti Mosquito Larva Vector Of Dengue Hemorrhagic Fever Disease (DHF). Journal of Physics: Conference Series, 1463(1): 12026.
- 50. Mukherjee D., Ak R., Patra M. (2022). Stigmasterol in Health and Disease: A Review. Published online July 19. https://doi.org/10.23880/ipcm-16000230
- 51. Naeim H., El-Hawiet A., Abdel Rahman R.A., Hussein A., El Demellawy M. A., Embaby A.M. (2020). Antibacterial activity of Centaurea pumilio L. root and aerial part extracts against some multidrug resistant bacteria. BMC complementary medicine and therapies Springer 20: 1–13. https://doi.org/10.1186/s12906-020-2876-y
- 52. Najah Z., Alshawish M. (2023). GC-MS Analysis of Rhus Tripartita Roots Extract. Journal of Humanitarian and Applied Sciences 8(16): 331–339.
- 53. Nurjanah N., Jacoeb A.M., Hidayat T., Hazar S., Nugraha R. (2016). Antioxidant activity, total phenol content, and bioactive components of lindur leave (Bruguierra gymnorrhiza). American Journal of Food Science and Health, 2(4): 65–70.
- 54. Ojekale A.B., Lawal O.A., Lasisi M.O. (2016). Cyathula prostrata: a potential herbal hope for hypertensives, an animal model study and its secondary metabolites assessment via GC-MS. European Journal of Medicinal Plants 14(2): 1–10. https://doi.org/10.9734/EJMP/2016/25007
- 55. Ojinnaka C.M., Nwachukwu K.I., Ezediokpu M.N. (2015). The chemical constituents and bioactivity of the seed (fruit) extracts of Buchholzia coriacea Engler (Capparaceae). Journal of Applied Sciences and Environmental Management 19(4): 795–801. https://doi.org/10.4314/jasem.v19i4.29
- 56. Osamudiamen P.M., Aiyelaagbe O.O., Vaid S., Sangwan P.L., Ogbesejana A.B., Saxen A.K. (2020). Comparative in-vitro anticancer and brine shrimp cytotoxic activities of Mezoneuron benthamianum Baill. Journal of Medicinal Plants for Economic Development AOSIS 4(1): 1–5. https://doi.org/10520/ejc-jomped-v4-n1-a2
- 57. Osman M.E., Abo Elnasr A.A., Mohamed E.T., Faraag A.H.I. (2024). Enhancement of Streptomyces thinghirensis WAE1 for production of bioactive metabolites under different optimization strategies. Microbial Pathogenesis 189: 106603. https://doi.org/10.1016/j.micpath.2024.106603
- 58. Paranjothi, C.C.J., & Murali, S.R. (2018). Antibacterial activity and GCMS analysis of the extract of leaves of Rhizophora apiculata (a mangrove plant). World J Pharm Res, 7: 1–8.
- 59. Pathak P., Kumari A., Chandler B.D., Zettler, L. W. (2023). In vitro propagation and phytochemical analysis of Vanda cristata Wall. ex Lindl.: An endangered medicinal orchid of biopharmaceutical importance. South African Journal of Botany 153: 109–123. https://doi.org/10.1016/j.sajb.2022.11.023
- 60. Purba, R. M., & Muliarta, I. N. (2024). A papaya leaves as a plant-based pesticide to control pests and plant diseases. Formosa Journal of Sustainable Research, 3(7): 1455–1476.
- 61. Purwiyanto A.I.S., Suteja Y., Trisno Ningrum, P.S., Putri W.AE., Rozirwan, Agustriani F., Fauziyah., Cordova M.R., Koropitan A.F. (2020). Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment. Marine Pollution Bulletin 158: 111380. https://doi.org/10.1016/j.marpolbul.2020.111380
- 62. Rajput A., Sharma R, and Bharti R. (2022). Pharmacological activities and toxicities of alkaloids on human health. Materials Today: Proceedings 48: 1407–1415. https://doi.org/10.1016/j.matpr.2021.09.189
- 63. Rani D.J., Vijayanchali S. (2021). Phytochemical composition and antioxidant activity of fresh and dried grape (Vitis vinifera) fruit proportions. Int. J. Innov. Sci. Res. Technol 6: 734–739.
- 64. Rizvi S., Raza S.T., Ahmed F., Ahmad A., Abbas S., Mahdi F. (2014). The role of vitamin E in human health and some diseases. Sultan Qaboos University Medical Journal Sultan Qaboos University 14(2): e157.
- 65. Robbiyan R., Pandapotan M.M., Apriani R. (2021). Penentuan Kadar Flavonoid dari Ekstrak Kulit Salak (Salacca Zalacca. Reinw) Berdasarkan Perbedaan Pengeringan Simplisia. Lantanida Journal Ar-Raniry State Islamic University of Banda Aceh 9(1): 498718.
- 66. Rosa J.A.O., Jesam U. (2024). Evaluation of the Healing Properties of Pentaclethra Macrophylla Seed Pod on Diabetic Wounds. Nigerian Journal of Pharmaceutical and Applied Science Research 13(1): 8–18. https://doi.org/10.60787/nijophasr-v13-i1-544
- 67. Rozirwan., Iskandar, I., Hendri M., Apri R., Supardi Azhar N., Mardiansyah W. (2019). Distribution of phytoplankton diversity and abundance in Maspari island waters, South Sumatera, Indonesia. Journal of Physics: Conference Series 1282(1): 1–10. https://doi.org/10.1088/1742-6596/1282/1/012105
- 68. Rozirwan., Iskandar I., Hendri M., Apri R., Supardi., Azhar N., Mardiansyah W. (2019). Distribution of phytoplankton diversity and abundance in Maspari island waters, South Sumatera, Indonesia. Journal of Physics: Conference Series, 1282(1): 1–10. https://doi.org/10.1088/1742-6596/1282/1/012105
- 69. Rozirwan., Melki., Apri R., Fauziyah Agussalim A., Hartoni., Iskandar I. (2021). Assessment the macrobenthic diversity and community structure in the Musi Estuary, South Sumatra, Indonesia. Acta Ecologica Sinica 41(4): 346–350. https://doi.org/10.1016/j.chnaes.2021.02.015
- 70. Rozirwan., Nugroho R.Y., Hendri M., Fauziyah., Putri W.A.E., Agussalim A. (2022). Phytochemical profile and toxicity of extracts from the leaf of Avicennia marina (Forssk.) Vierh. collected in mangrove areas affected by port activities. South African Journal of Botany Elsevier 150: 903–919. https://doi.org/10.1016/J.SAJB.2022.08.037
- 71. Rozirwan R., Hananda H., Nugroho R.Y., Apri R., Khotimah N.N., Fauziyah F., Putri W.A.E., Aryawati R. (2023a). Antioxidant Activity, Total Phenolic, Phytochemical Content, and HPLC Profile of Selected Mangrove Species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. Tropical Journal of Natural Product Research Available 7(7): 3482–3489.
- 72. Rozirwan, R., Muhtadi, M., Ulqodry, T. Z., Nugroho, R. Y., Khotimah, N. N., Fauziyah, F., Putri, W. A. E., Aryawati, R., & Mohamed, C. A. R. (2023b). Insecticidal Activity and Phytochemical Profiles of Avicennia marina and Excoecaria agallocha Leaves Extracts. ILMU KELAUTAN: Indonesian Journal of Marine Sciences; 28(2): Ilmu Kelautan,. https://doi.org/10.14710/ik.ijms.28.2.148-160
- 73. Saha K., Proma R.Z., Khan N. (2020). Phytochemical screening of plant extracts and GC-MS analysis of n-hexane extract of the leaves of Cassia alata Linn. The Journal of Phytopharmacology 9(5): 342–347.
- 74. Saidi, N., Ginting, B., Lini, Z., Riski, C. D., Asma, N., Mulya, M. I., Yahya, M., & Bahi, M. (2024). Toxicity of mangrove plant extract (Rhizophora stylosa Griff.) using the brine shrimp lethality test method. IOP Conference Series: Earth and Environmental Science, 1356(1): 12107.
- 75. Sarah Q.S., Anny F.C., Misbahuddin M. (2017). Brine shrimp lethality assay. Bangladesh Journal of Pharmacology 12(2): 186–189. https://doi.org/10.3329/bjp.v12i2.32796
- 76. Sen S., Yalcin M, Tasçioglu C., and Ozbayram A.K. (2017). Larvicidal activities of some bark and wood extracts against wood-damaging insects. Maderas. Ciencia y tecnología SciELO Chile 19(3): 273–284. https://doi.org/10.4067/S0718-221X2017005000023
- 77. Shaikh J.R., Patil M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies 8(2): 603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
- 78. Song Q., Liu J., Dong L., Wang X., Zhang X. 2021. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomedicine & Pharmacotherapy 140: 111750. https://doi.org/10.1016/j.biopha.2021.111750
- 79. Syawal H., Hakim L., Effendi I. (2020). Phytochemical analysis of Rhizophora apiculata leaf extract and its inhibitory action against Staphylococcus aureus, Aeromonas hydrophila and Pseudomonas aeruginosa. Aquaculture, Aquarium, Conservation & Legislation Bioflux SRL 13(4): 2242–2249.
- 80. Tiwari R., Jain R., Dubey R.S., Tiwari A., Shukla A.K. (2021). Lupeol: Bioactive triterpenoid act as anti-inflammatory agent. Advance Pharmaceutical Journal 6(2): 48–51. https://doi.org/10.31024/apj.2021.6.2.3
- 81. Tsai F.S., Lin L.W., Wu, C.R. (2016). Lupeol and its role in chronic diseases. Drug Discovery from Mother Nature Springer 145–175. https://doi.org/10.1007/978-3-319-41342-6_7
- 82. Ulqodry T.Z., Agussalim A., Widiastuti I., Aryawati R., Aprianto, A. E. (2019). The Preliminary Assessment of Mangrove Status at Payung Island in Musi Estuary, Indonesia. in: International Conference of Mangroves and Its Related Ecosystems 2019.
- 83. Vittaya L., Charoendat U., Janyong S., Ui-Eng J., Leesakul, N. (2022). Comparative analyses of saponin, phenolic, and flavonoid contents in various parts of Rhizophora mucronata and Rhizophora apiculate and their growth inhibition of aquatic pathogenic bacteria. Journal of Applied Pharmaceutical Science 12(11): 111–121. https://doi.org/10.7324/JAPS.2022.121113
- 84. Zahra N.N., Muliasari H., Andayani Y., Sudarma I.M. (2021). Analisis kadar fenolik total dan aktivitas antiradikal bebas madu dan propolis Trigona sp. asal Lombok Utara. Analit: Analytical and Environmental Chemistry 74–82. https://doi.org/10.23960/aec.v6.i1.2021.p74-82
- 85. Zulfahmi I., Paujiah E.P.A., Roza Z.H., Helmi K., nafis B., Nur F.M., Fazila P.N. (2024). Brine shrimp cytotoxicity bioassay of red mangrove (Rhizophora mucronata) leaves using different solvents and its potency as antibacterial. Biodiversitas Journal of Biological Diversity, 25(9) Toxicity and potential bioactive compounds of Rhizophora apiculata and Bruguiera sexangula leaf extracts from two small islands on the coast of South Sumatra 10.12911/22998993/196660
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ada81f20-ca14-4bc2-a2fa-303835e20bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.