Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Utilization of sewage sludge during phytoremediation of territories and its introduction as fertilizer for energy crops requires testing for phytotoxicity of the soil cover, which will allow determining an ecologically safe dose of its use and minimizing the negative impact on agroecosystems. It will also contribute to the formation of optimal productivity of agrophytocenoses as well as optimize the nutrition conditions for intensive growth and development of cultivated plants. The research conducted an analysis of the impact of the increase in phytotoxicity of sod-podzolic soil from the introduction of fresh sewage sludge and its composts with various organic materials (sawdust of coniferous trees, straw of grain crops) on the formation of biomass productivity of energy willow during a repeated cycle of cultivation. Regression and correlation analyses were used to build a mathematical model of biomass productivity under the influence of changes in the phytotoxicity of podzol soil due to repeated introduction of sewage sludge under the energy willow. The obtained regression dependences show that the formation of phytotoxicity of sod-podzolic soil is most affected by the increase in the content of Pb and Cd. However, the introduction of the norm of fresh SS within 80 t/ha did not lead to an increase in the content of these heavy metals above the maximum allowable concentrations, although it contributed to an increase in phytotoxicity to an above average level. The maximum predicted productivity, depending on the content of mobile forms of heavy metals in the soil, is about 60 t/ha at a content of Cd = 0.25; Ni = 1.1 Pb = 4.6 mg/kg soil. As the phytotoxicity of the soil increases to an above-average level (phytotoxic effect 40–46%), the intensity of biomass accumulation of energy willow slows down somewhat. In general, after a repeated cycle of using the plantation during the 4-year growing season of energy willow in all options where fertilizers were applied, the productivity of wood biomass increased significantly compared to the control option by 7.7–17.4 t/ha and with the smallest significant difference between the indicators of the research options 4.23 t/ha.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
217--226
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str.15, 03041, Kyiv, Ukraine
autor
- Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
autor
- Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
autor
- Kyiv National Economic University named after Vadym Hetman, Prospekt Peremogy, 54/1, 03057, Kyiv, Ukraine
autor
- Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
autor
- Ivano-Frankivsk National Medical University, Halytska Str. 2, 76018, Ivano-Frankivsk, Ukraine
autor
- Ivano–Frankivsk Professional College of Lviv National Environmental University, Yunosti, St. 11, Ivano-Frankivsk, 76494, Ukraine
Bibliografia
- 1. Bilous A.M. Holyaka D.M., Avramchuk O.O. 2012. Metodychni osoblyvosti doslidzhennya nadzemnoyi fitomasy chaharnykovykh verb u pryrodnykh. Bioresursy i pryrodokorystuvannya : nauk. zhurnal. K. : Vyd. tsentr NUBiP Ukrayiny, 5–6, 112–115.
- 2. DSTU 4287:2004. 2005. Yakistʹ gruntu. Vidbyrannya prob. K. : Derzhstandart Ukrayiny, 9.
- 3. DSTU 4770.3:2007. 2009. Yakistʹ gruntu. Vyznachennya vmistu rukhomykh spoluk kadmiyu v grunti v buferniy amoniyno-atsetatniy vytyazhtsi z rN 4,8 metodom atomno-absorbtsiynoyi spektrofotometriyi. K. : Derzhspozhyvstandart Ukrayiny, 9.
- 4. DSTU 4770.2:2007. 2009. Yakistʹ gruntu. Vyznachennya vmistu rukhomykh spoluk tsynku v grunti v buferniy amoniyno-atsetatniy vytyazhtsi z rN 4,8 metodom atomno-absorbtsiynoyi spektrofotometriyi. K. : Derzhspozhyvstandart Ukrayiny, 8.
- 5. Frédette C., Labrecque М., Comeau Y., Brisson J. 2019. Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix. Journal of Environmental Management, 246, 526–537.
- 6. Fijałkowski K., Kwarciak-Kozłowska A. 2021. Sewage Sludge as Soil Conditioner and Fertilizer. Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology,14. https://doi.org/10.1002/9781119670391.ch14
- 7. Fonovyy vmist mikroelementiv u gruntakh Ukrayiny / [A.I. Fatyeyev, YA.V. Pashchenko, S.A.Balyuk ta in.] za red. A.I. Fatyeyeva, YA.V. Pashchenko. – Kharkiv: NNTS «In-t gruntoznavstva ta ahrokhimiyi im. O.N.Sokolovsʹkoho», 2003, 117.
- 8. Godlewska P., Jośko I., Oleszczuk P. 2022. Ecotoxicity of sewage sludge- or sewage sludge/willow-derived biochar-amended soil. Environmental Pollution, 305. https://doi.org/10.1016/j.envpol.2022.119235
- 9. Hrodzynsʹkyy D.M., Kutsokonʹ N.K., Shylina Y.V. 2006. Zastosuvannya roslynnykh test-system dlya otsinky kombinovanoyi diyi faktoriv riznoyi pryrody. K. : Fitootsiotsentr, 60.
- 10. Hrytsulyak H., Lopushnyak V. 2017. Osad stichnykh vod u systemi udobrennya verby enerhetychnoyi: monohrafiya. Lʹviv: Prostir-M, 180.
- 11. Khursheed A.W., Zuber M. 2020. Sofi, Junaid Ahmad Malik, Jahanger Ahmad Wani. Phytoremediation of Heavy Metals Using Salix (Willows). Bioremediation and Biotechnology, 2, 161-174. DOI: 10.1007/978-3-030-40333-1_9
- 12. Kravchenko I.V., Mykytenko V.I. 2018. Systemy kompʺyuternoyi matematyky : navch. posib. dlya studentiv spetsialʹnosti «Avtomatyzatsiya ta kompʺyuterno-intehrovani tekhnolohiyi». [Elektronnyy resurs]. Elektronni tekstovi dani (1 fayl: 5,57 Mbayt). Kyyiv : KPI im. Ihorya Sikorsʹkoho, 243.
- 13. Lopushnyak V., Hrytsulyak H., Savʺyuk R., Barchak B., Yakubovsʹkyy T. 2020. Produktyvnistʹ verby enerhetychnoyi za vnesennya osadu stichnykh vod na dernovo-pidzolystomu grunti. Visnyk ahrarnoyi nauky Prychornomorʺya. Vyp, 2, 63–70. DOI: 10.31521/2313-092X/2020-2(106)
- 14. Lopushniak V., Lopushnjak G., Grytsulyak G. 2016. Bioenergetic and economic estimation of sewage sludge use in osier cultivation. Тeka commission of motorization and energetics in agriculture, 16(3), 95–100.
- 15. Lopushnyak V., Polutrenko M., Hrytsulyak H., Karabach K., Voloshin Y. 2022. Accumulation of Heavy Metals in Silphium Perfoliatum L. for the Cultivation of Oil-Contaminated Soils Ecological Engineering and Environmental Technology, 23(3), 30–39.
- 16. Lopushnyak, V., Hrytsulyak, H., Voloshin, Y., Lopushnjak H., Baran B. 2022. Bioaccumulation and Translocation of Heavy Metals in Plants Artichoke During Sewage Sediment in Podzols Soils. Ecological Engineering and Environmental Technology, 6, 178–187.
- 17. Models of systemic management of soil fertility potential (on the example of the Kharkov and Volyn regions) / by scien. ed. S. А. Baliuk, R. S. Truskavetskyi (2018). Kharkiv: Stylish printing house, 116.
- 18. Vasylʹyeva L.V., Honcharov O.A., Konovalov V.A., Solovyova N.A. 2006. Chyselʹni metody rozvʺyazannya inzhenernykh zadach u paketi MathCAD. Kurs lektsiy ta indyvidualʹni zavdannya : navch. posibnyk z dystsypliny «Informatyka» dlya studentiv vyshchykh navchalʹnykh zakladiv. Kramatorsʹk : DDMA, 108.
- 19. Paranchuk Y.A.S., Moroz V.I. 2013. Obchyslyuvannya ta prohramuvannya v Mathcad : pidruchnyk. Lʹviv : Vydavnytstvo Lʹvivsʹkoyi politekhniky, 364.
- 20. Postanova Pro zatverdzhennya normatyviv hranychno dopustymykh kontsentratsiy nebezpechnykh rechovyn u gruntakh, a takozh pereliku takykh rechovyn vid 15 hrudnya 2021 r. No 1325 https://www.kmu.gov.ua/npas/pro-zatverdzhennya-normativiv-granichno-dopustimih-koncentracij-nebezpechnih-rechovin-u-gruntah-takozh-pereliku-takih-rechovin-i151221-1325
- 21. Terentʹyev A.Y.U., Volodymyrenko V.M., Bala O.P. 2011. Vykorystannya kompʺyuternykh tekhnolohiy dlya statystychnoyi obroblennya informatsiyi u lisovomu hospodarstvi. Naukovyy visnyk NUBiP Ukrayiny : zb. nauk. pratsʹ. Seriya : Lisivnytstvo ta dekoratyvne sadivnytstvo. K. : Vyd-vo NUBiP Ukrayiny. Vyp, 164(1). [Elektronnyy resurs]. – Dostupnyy z http://www.nbuv.gov.ua/portal/chem_biol/nvnau_lds / 2011_164_1/11tay.pdf.
- 22. Sas E., Hennequin L.M., Frémont A., Jerbi A., Legault N., Lamontagne J., Fagoaga N., Hallett J.P., Fennell P.S., Barnabé S., Labrecque M., Brereton B.N.J., Pitre F.E. 2021. Biorefinery potential of sustainable municipal wastewater treatment using fast-growing willow. Science of The Total Environment, 792, 128–146.
- 23. Syasyev A.V.S. 2004. Vstup do systemy MathCAD: navch. posib. Dnipropetrovsʹk : Vydavnytstvo Dnipropetrovsʹkoho universytetu, 108.
- 24. Urbaniak M., Wyrwicka A., Tołoczko W, Serwecińska L., Zieliński M. 2017. The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation Science of The Total Environment, 586, 66–75. https://doi.org/10.1016/j.scitotenv.2017.02.012
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ada68342-bd0f-438a-ba1b-8130972fffd7