PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bacterial Community of Neutral Mine Drainage of Elizabeth’s Shaft (Slovinky, Slovakia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bakteryjna wspólnota neutralnej kopalni Drenaż szybu Elizabeth's (Slovinky, Słowacja)
Języki publikacji
EN
Abstrakty
EN
Neutral mine drainage is the less frequent subject of the interest than acid mine drainage but it can have adverse environmental effects caused mainly by precipitation of dissolved Fe. The aim of the study was to characterize the composition of bacterial population in environment with high concentration of iron and sulfur compounds represented by neutral mine drainage water of Elizabeth’s shaft, Slovinky (Slovakia). The pH value of drainage water decreased from 7.1 to 6.5 during the years 2008–2014. Direct microscopic observations, cultivation methods, and 454 pyrosequencing of the 16S rRNA gene amplicons were used to examine the bacterial population. Microscopic observations identified iron–oxidizing Proteobacteria of the genera Gallionella and Leptothrix which occurrence was not changed during the years 2008–2014. Using 454 pyrosequencing, there were identified members of 204 bacterial genera that belonged to 25 phyla. Proteobacteria (69.55%), followed by Chloroflexi (10.31%) and Actinobacteria (4.24%) dominated the bacterial community. Genera Azotobacter (24.52%) and Pseudomonas (14.15%), followed by iron–oxidizing Proteobacteria Dechloromonas (11%) and Methyloversatilis (8.53%) were most abundant within bacterial community. Typical sulfur bacteria were detected with lower frequency, e.g., Desulfobacteraceae (0.25%), Desulfovibrionaceae (0.16%), or Desulfobulbaceae (0.11%). Our data indicate that the composition of bacterial community of the Elizabeth’s shaft drainage water reflects observed neutral pH, high level of iron and sulfur ions in this aquatic habitat.
PL
Odciek kopalniany o odczynie obojętnym jest rzadszym przedmiotem zainteresowania niż odciek kopalniany kwaśny, ale może mieć niekorzystne skutki środowiskowe spowodowane głównie przez wytrącanie rozpuszczonego Fe. Celem artykułu jest scharakteryzowanie składu bakterii w środowisku o wysokim stężeniu związków żelaza i siarki reprezentowanych przez obojętne wody drenażowe kopalni szybu Elizabeth, Slovinky (Słowacja). Wartość pH wody drenażowej spadła z 7,1 do 6,5 w latach 2008–2014. Bezpośrednie obserwacje mikroskopowe, metody hodowli i pirosekwencjonowanie amplikonów genu 16S rRNA wykorzystano do zbadania populacji bakterii. Obserwacje mikroskopowe zidentyfikowały proteobakterie utleniające żelazo z rodzajów Gallionella i Leptothrix, których występowanie nie uległo zmianie w latach 2008–2014. Przy użyciu pirosekwencjonowania 454 zidentyfikowano 204 rodzajów bakterii należących do 25 typów. Proteobakterie (69,55%), a następnie Chloroflexi (10,31%) i aktynobakte rie (4,24%) zdominowały społeczność bakteryjną. Rodzaje Azotobacter (24,52%) i Pseudomonas (14,15%), a następnie proeto-bakterie żelazo utleniające Dechloromonas (11%) i Methyloversatilis (8,53%) były najbardziej rozpowszechnione w społeczności bakteryjnej. Typowe bakterie siarkowe wykryto z mniejszą częstotliwością, np. Desulfobacteraceae (0,25%), Desulfovibrionaceae (0,16%) lub Desulfobulbaceae (0,11%). Uzyskane dane wskazują, że skład flory bakteryjnej wody drenażowej szybu Elżbieta odzwierciedla obserwowane neutralne pH, wysoki poziom zawartości jonów żelaza i siarki w środowisku wodnym.
Rocznik
Strony
89--94
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
  • Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Šrobárova 2, 041 54 Košice, Slovakia
  • Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, Department of Biology and General Ecology, T. G. Masaryka 24, 960 53 Zvolen, Slovakia
  • Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, Department of Biology and General Ecology, T. G. Masaryka 24, 960 53 Zvolen, Slovakia
  • Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Šrobárova 2, 041 54 Košice, Slovakia
  • Matej Bel University, Faculty of Natural Science, Department of Biology and Ecology, Tajovskeho 40, 974 01 Banská Bystrica, Slovakia
  • Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Šrobárova 2, 041 54 Košice, Slovakia
  • Institute of Animal Physiology, Slovak Academy of Sciences, Košice 041 01, Slovakia
Bibliografia
  • 1. ABO-AMER, Aly E. et al. Isolation and molecular characterization of heavy metal-resistant Azotobacter chroococuum from agricultural soil and their potential application in bioremediation. In Geomicrobiology Journal, 31 (7), 2014, p. 551-561, ISSN 1521-0529.
  • 2. ANGELOVIČOVÁ, Lenka et al. Toxicity of heavy metals to soil biological and chemical properties in conditions of environmentally polluted area middle Spiš (Slovakia). In Carpathian Journal of Earth Environmental Sciences, 10 (1), 2015, p. 193–201, ISSN 1844-489X.
  • 3. BAJTOŠ, Peter et al. Mining impact on the environment. Spišská Nová Ves: State Geological Institute of Dionýz Štúr, 2015. 93 p.
  • 4. BAJTOŠ, Peter and ZÁHOROVÁ, Ľubica. Monitoring of environmental impacts in the hazardous areas of magnesite, talc and ore deposits extraction. Spišská Nová Ves: State Geological Institute of Dionýz Štúr, 2007, 68.
  • 5. CUMMINGS, David E. et al. Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. In Archives of Microbiology, 171 (3), 1999, p. 183–188, ISSN 1432-072X.
  • 6. DA COSTA, Bruna Z. et al. Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage. In Brazilian Journal of Microbiology, 47 (4), 2016, p. 846–852, ISSN 1517-8382.
  • 7. DREWNIAK, Lukasz et al. Physiological and metagenomic analyses of microbial mats involved in self-purification of mine waters contaminated with heavy metals. In Frontiers in Microbiology, 7 (106), 2016, p. 1252, ISSN 1664- 302X.
  • 8. FRIGAARD, Niels-Ulrik and Dahl, Christine. Sulfur metabolism in phototrophic sulfur bacteria. In Advances in Microbial Physiology 54, 2009, p. 103–200, ISSN 0065-2911.
  • 9. HALTER, David et al. Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. In Research in Microbiology, 162 (9), 2011, p. 877–887, ISSN 0923-2508.
  • 10. CHAKRABORTY, Anirban and PICARDAL, Flynn. Induction of Nitrate-Dependent Fe(II) Oxidation by Fe(II) in Dechloromonas sp. Strain UWNR4 and Acidovorax sp. strain 2AN. In Applied and Environmental Microbiology 79 (2), 2013, p. 748–752, ISSN 1098-5336.
  • 11. CHOUDHARY, Sangeeta and SAR, Pinaki. Uranium biomineralization by a resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. In Journal of Hazardous Materials, 186 (1), 2011, p. 336–343. ISSN 0304-3894.
  • 12. KADNIKOV, Vitaly V. et al. Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit. In Microbiology, 85 (6), 2016, p. 745–751, ISSN 1608-3237.
  • 13. KISKOVÁ et al. The bacterial population of neutral mine drainage water of Elizabeth’s shaft (Slovinky, Slovakia). In Current Microbiology, 2018, p. 1-9, ISSN 1432-0991. doi: 10.1007/s00284-018-1472-6 (in press)
  • 14. KUCEROVA, Gabriela et al. Mineralogy of neutral mine drainage in the tailings of sidetite-Cu ores in Eastern Slovakia. In The Canadian Mineralogist, 52 (5), 2014, p. 779–798, ISSN 0008-4476.
  • 15. KUMAR, Rakshak et al. Growth media composition and heavy metal tolerance behaviour of bacteria characterized from the sub-surface soil of uranium rich ore bearing site of Domiasiat in Meghalaya. In Indian Journal of Biotechnology, 12 (1), 2013, p. 115–119, ISSN 0975-0967.
  • 16. KUNOH, Tatsuki et al. Perspectives on the biogenesis of iron oxide complexes produced by Leptothrix, an iron-oxidizing bacterium and promising industrial application for their functions. In Journal of Microbial and Biochemical Technology, 7 (6), 2015, p. 419–426, ISSN 1948-5948.
  • 17. LINDSAY, Matthew B.J. et al. Mineralogical, geochemical and microbial investigation of a sulfide-rich deposit characterized by neutral drainage. In Applied Geochemistry 24 (12), 2009, p. 2212–2221, ISSN 0883-2927.
  • 18. LINDSAY, Matthew B.J. et al. Geochemical and mineralogical aspect of sulfide mine tailings. In Applied Geochemistry, 57, 2015, p. 157–177. ISSN 0883-2927.
  • 19. NAZ, Tayyaba et al. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. In Toxicology and Industrial Health, 32 (9), 2016, p. 1619–1627, ISSN 1477-0393.
  • 20. PEREIRA, Letícia B. et al. Changes in the bacterial community of soil from a neutral mine drainage channel. In PLoS ONE, 9 (5), 2014, e96605, ISSN 1932-6203.
  • 21. PEREIRA, Letícia B. et al. Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine. In Genetics and Molecular Biology, 38 (4), 2015, p. 484–489, ISSN 1415-4757.
  • 22. REIS, Mariana et al. The prokaryotic community of a historically mining-impacted tropical stream sediment is as diverse as that from a pristine stream sediment. In Extremophiles 17 (2), 2013, p. 301–309, ISSN 1433-4909.
  • 23. SCHIPPERS, Axel et al. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. In Hydrometallurgy, 104 (3–4), 2010, p. 342–350, ISSN 0304-386X.
  • 24. SCHLOSS, Patrick D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. In Applied and Environmental Microbiology, 75 (23), 2009, p. 7537–7541, ISSN 1098-5336.
  • 25. TRAVISANY, Dante et al. Draft genome sequence of the Sulfobacillus thermosulfidooxidans Cutipay strain, an indigenous bacterium isolated from a naturally extreme mining environment in Northern Chile. In Journal of Bacteriology, 194 (22), 2012, p. 6327–6328, ISSN 1098-5530.
  • 26. WATANABE, Takeshi et al. Bacterial consortia in iron-deposited colonies formed on paddy soil surface under microaerobic conditions. In Soil Science and Plant Nutrition, 59 (3), 2013, p. 337-346, ISSN 1747-0765.
  • 27. XU, Xinliang et al. Impacts of mining and urbanization on the Qin-Ba Mountainous environment, China. In Sustainability, 8 (5), 2016, p. 488, ISSN 2071-1050.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ada39d5c-29ed-4e4e-b8c0-554f3d54a57b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.