Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effect of magnetic field dependent (MFD) viscosity on thermal convection in a horizontal ferromagnetic fluid layer has been investigated numerically. A correction is applied to Sunil et al. [24] which is very important in order to predict the correct behavior of MFD viscosity. Linear stability analysis has been carried out for stationary convection. The MFD viscosity parameter δ as well as the measure of nonlinearity of magnetization M3, both have a stabilizing effect on the system. Numerical results are also obtained for large values of magnetic parameter M1 and predicted graphically.
Wydawca
Czasopismo
Rocznik
Tom
Strony
39--46
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla 171005, India
autor
- Research Scholar, Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla 171005, India
autor
- Research Scholar, Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla 171005, India
Bibliografia
- [1] AUERNHAMMER G.K., BRAND H.R., Thermal convection in a rotating layer of a magnetic fluid, Eur. Phys. J. B, 2000, 16, 157.
- [2] CHANDRASEKHAR S., Hydrodynamic and Hydromagnetic Stability, Dover Publications, Inc., New York 1981.
- [3] FINLAYSON B.A., Convective instability of ferromagnetic fluids, J. Fluid Mech., 1970, 40, 753.
- [4] KEFAYATI G.H.R., Lattice Boltzmann simulation of natural convection in partially heated cavities utilizing kerosene/cobalt ferrofluid, IJST, Trans. Mech. Eng., 2013, 37(M2), 107.
- [5] LALAS D.P., CARMI S., Thermoconvective stability of ferrofluids, Phys. Fluids, 1971, 14(2), 436.
- [6] LANGE A., Thermal convection of magnetic fluids in a cylindrical geometry, J. Magn. Mag. Mater., 2002, 252, 194.
- [7] LEE J., SHIVAKUMARA I.S., Onset of penetrative convection in a ferrofluid-saturated porous layer, Special Topics Rev. Porous Media: An Int. J., 2011, 2(3), 217.
- [8] MOJUMDER S., KHAN M.D.R., SAHA S., HASAN M.N., SAHA S.C., Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semicircular bottom heater having different ferrofluid inside, J. Magn. Mag. Mater., 2016, 407, 412.
- [9] MULLER H.W., MARIO L., Ferrofluid Dynamics, Ferrofluids magnetically controllable fluids and their applications, Springer, 2002, 112-123.
- [10] NANJUNDAPPA C.E., SHIVAKUMARA I.S., RAVISHA M., The onset of buoyancy driven convection in a ferromagnetic fluid saturated porous medium, Meccanica, 2010, 45, 213.
- [11] NEURINGER J.L., ROSENWEIG R.E., Physics of Fluids, 7, 1927, 1964.
- [12] ODENBACH S., Ferrofluids: Magnetically Controllable Fluids and Their Applications, Springer, New York, 2002.
- [13] PRAKASH J., On stationary convection and oscillatory motions in ferromagnetic convection in a ferrofluid layer, J. Magn. Mag. Mater., 2012, 324(8), 1523.
- [14] PRAKASH J., GUPTA S., On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer, J. Magn. Mag. Mater., 2013, 345, 201.
- [15] PRAKASH J., On exchange of stabilities in ferromagnetic convection in a rotating ferrofluid saturated porous layer, J. Appl. Fluid Mech., 2014, 7(1), 147.
- [16] PRAKASH J., On the characterization of non-oscillatory motions in ferromagnetic convection with magnetic field dependent viscosity in a rotating porous medium, J. Egypt. Math. Soc., 2014, 22, 286.
- [17] PRAKASH J., BALA R., On estimating the complex growth rates in ferromagnetic convection with magnetic-field-dependent viscosity in a rotating sparsely distributed porous medium, J. Appl. Mech. Tech. Phys., 2016, 57(4), 623.
- [18] ROSENSWEIG R.E., Ferrohydrodynamics, Cambridge University Press, England, 1985.
- [19] RUDRAIAH N., SHEKAR G.N., Convection in magnetic fluid with internal heat generation, ASME J. Heat Transfer, 1991, 113, 122.
- [20] SEKAR R., RAJU K., VASANTHAKUMARI R., A linear analytical study on Soret-driven ferrothermohaline convection in an anisotropic porous medium, J. Magn. Mag. Mater., 2013, 331, 122.
- [21] SHLIOMIS M.I., Magnetic fluids, Soviet Phys. Uspekhi (Engl. trans.), 1974, 17(2), 153.
- [22] SIDDHESHWAR P.G., Rayleigh–Benard convection in a ferromagnetic fluid second sound, Jpn. Soc. Mag. Fluids, 1993, 25, 32.
- [23] SUNIL, SHARMA A., KUMAR P., GUPTA U., The effect of magnetic-field-dependent viscosity and rotation on ferrothermohaline convection saturating a porous medium in the presence of dust particles, J. Geophys. Eng., 2005, 2, 238-251.
- [24] SUNIL, SHARMA A., SHARMA D., KUMAR P., Effect of magnetic field dependent viscosity on thermal convection in a ferromagnetic fluid, Chem. Eng. Comm., 2008, 195, 571.
- [25] SUNIL, MAHAJAN A., A nonlinear stability analysis for rotating magnetized ferrofluid heated from below saturating a porous medium, Z. Angew. Math. Phys. (ZAMP), 2009, 60, 344.
- [26] SUSLOV S.A., Thermomagnetic convection in a vertical layer of ferromagnetic fluid, Phys. Fluids, 2008, 20, 084101, 1.
- [27] VAIDYANATHAN G., SEKAR R., BALASUBRAMANIAN R., Ferroconvective instability of fluids saturating a porous medium, Int. J. Eng. Sci., 1991, 29, 1259.
- [28] VAIDYANATHAN G., SEKAR R., RAMANATHAN A., Ferrothermohaline convection, J. Magn. Mag. Mater., 1997, 176, 321.
- [29] VAIDYANATHAN G., RAMANATHAN A., MARUTHAMANIKANDAN S., Effect of magnetic field dependent viscosity on ferroconvection in sparsely distributed porous medium, Indian J. Pure Appl. Phys., 2002, 40(3), 166.
- [30] ZEBIB A., Thermal convection in a magnetic field, J. Fluid Mech., 1996, 321, 121.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ada09c7f-a1c2-474a-ad7d-25b439131e74