Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Analiza kolizji w ruchu miejskim z wykorzystaniem technik głębokiego uczenia
Języki publikacji
Abstrakty
Road accidents are concerningly increasing in Andhra Pradesh. In 2021, Andhra Pradesh experienced a 20 percent upsurge in road accidents. The state's unfortunate position of being ranked eighth in terms of fatalities, with 8,946 lives lost in 22,311 traffic accidents, underscores the urgent nature of the problem. The significant financial impact on the victims and their families stresses the necessity for effective actions to reduce road accidents.This study proposes a framework that collects accident data from regions, namely Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam,and Gandhinagar in Vijayawada(India)from 2019 to 2021. The dataset comprises over 12,000 records of accident data. Deep learning techniquesare applied to classify the severity of road accidents into Fatal, Grievous, and Severe Injuries. The classification procedure leverages advanced neural network models, including the Multilayer Perceptron, Long-Short Term Memory, Recurrent Neural Network, and Gated Recurrent Unit. These modelsare trained on the collected data to accurately predict the severity of road accidents. The project study to make important contributions for suggesting proactive measures and policies to reduce the severity and frequency of road accidents in Andhra Pradesh.
Liczba wypadków drogowych w Andhra Pradesh niepokojąco rośnie. W 2021 r. stan Andhra Pradesh odnotował 20% wzrost liczby wypadków drogowych. Niefortunna pozycja stanu, który zajmuje ósme miejsce pod względem liczby ofiar śmiertelnych, z 8946 ofiarami śmiertelnymiw 22311 wypadkach drogowych, podkreśla pilny charakter problemu. Znaczący wymiar finansowy dla ofiari ich rodziny podkreśla konieczność podjęcia skutecznych działań w celu ograniczenia liczby wypadków drogowych. W niniejszym badaniu zaproponowano system gromadzenia danych o wypadkachz regionów Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam i Gandhinagar w Vijayawada (India) w latach 2019–2021. Zbiór danych obejmuje ponad 12 000 rekordów danych o wypadkach. Techniki głębokiego uczenia są stosowane do klasyfikowania wagi wypadków drogowychna śmiertelne, poważne i ciężkie obrażenia. Procedura klasyfikacji wykorzystuje zaawansowane modele sieci neuronowych, w tymwielowarstwowy perceptron, pamięć długoterminową i krótkoterminową, rekurencyjną sieć neuronową i Gated Recurrent Unit. Modele te są trenowane na zebranych danych w celu dokładnego przewidywania wagi wypadków drogowych. Projekt ma wnieść istotny wkład w sugerowanie proaktywnych środków i polityk mających na celu zmniejszenie dotkliwości i częstotliwości wypadków drogowych w Andhra Pradesh.
Rocznik
Tom
Strony
56--63
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
- Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering,Vijayawada, India
autor
- Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering,Vijayawada, India
- Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering,Vijayawada, India
autor
- Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering,Vijayawada, India
autor
- Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering,Vijayawada, India
- National Institute of TechnologyWarangal, Department of CSE, Warangal, India
Bibliografia
- [1] Al Bataineh A., Kaur D., Jalali S. M. J.: Multi-layer perceptron training optimization using nature-inspired computing. IEEE Access 10, 2022, 36963–36977.
- [2] Alghamdi T.A., Javaid N.: A survey of preprocessing methods used for analysis of big data originated from smart grids. IEEE Access 10, 2022, 29149–29171.
- [3] Amorim B. d. S.P., et al.: A Machine Learning Approach for Classifying Road Accident Hotspots. ISPRS International Journal of Geo-Information 12(6), 2023, 227.
- [4] Athiappan K., et al.: Identifying Influencing Factors of Road Accidents in Emerging Road Accident Blackspots. Advances in Civil Engineering, 2022.
- [5] Cai Q.: Cause analysis of traffic accidents on urban roads based on an improved association rule mining algorithm. IEEE Access 8, 2020, 75607–75615.
- [6] Chen M.-M., Chen M.-Ch.: Modeling road accident severity with comparisons of logistic regression, decision tree, and random forest. Information 11(5), 2020, 270.
- [7] Comi A., Polimeni A., Balsamo Ch.: Road accident analysis with data mining approach: evidence from Rome. Transportation research procedia 62, 2022, 798–805.
- [8] Ferreira-Vanegas C. M., Vélez J. I., García-Llinás G. A.: Analytical methods and determinants of frequency and severity of road accidents: a 20-year systematic literature review. Journal of Advanced Transportation, 2022.
- [9] Gatarić D., et al.: Predicting Road Traffic Accidents - Artificial Neural Network Approach. Algorithms 16(5), 2023, 257.
- [10] Gorzelanczyk P., Tylicki H.: Methodology for Optimizing Factors Affecting Road Accidents in Poland. Forecasting 5(1), 2023, 336–350.
- [11] Gutierrez-Osorio C., González F. A., Pedraza C. A.: Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data. Computers 11(9), 2022, 126.
- [12] Islam M. J., et al.: Application of min-max normalization on subject-invariant EMG pattern recognition. IEEE Transactions on Instrumentation and Measurement 71, 2022, 1–12.
- [13] Jia B.-B., Zhang M.-L.: Multi-dimensional classification via decomposed label encoding. IEEE Transactions on Knowledge and Data Engineering, 2021.
- [14] Kaffash Charandabi N., Gholami A., Abdollahzadeh Bina A.: Road accident risk prediction using generalized regression neural network optimized with self-organizing map. Neural Computing and Applications 34(11), 2022, 8511–8524.
- [15] Komol, M.M.R., et al.: Deep RNN Based Prediction of Driver’s Intended Movements at Intersection Using Cooperative Awareness Messages. IEEE Transactions on Intelligent Transportation Systems 24(7), 2023, 6902–6921.
- [16] Le X.-H., et al.: Application of long short-term memory (LSTM) neural network for flood forecasting. Water 11(7), 2019, 1387.
- [17] Mandal V., et al.: Artificial intelligence-enabled traffic monitoring system. Sustainability 12(21), 2020, 9177.
- [18] Novikov A., Shevtsova A., Vasilieva V.: Development of an approach to reduce the number of accidents caused by drivers. Transportation research procedia 50, 2020, 491–498.
- [19] Östh J., et al.: Driver kinematic and muscle responses in braking events with standard and reversible pre-tensioned restraints: validation data for human models. SAE Technical Paper, 2013, 2013-22-0001.
- [20] Rahman M.M., et al.: Towards sustainable road safety in Saudi Arabia: Exploring traffic accident causes associated with driving behavior using a Bayesian belief network. Sustainability 14(10), 2022, 6315.
- [21] Rezk N. M., et al.: Recurrent neural networks: An embedded computing perspective. IEEE Access 8, 2020, 57967–57996.
- [22] Saravanarajan V.S., et al.: Car crash detection using ensemble deep learning. Multimedia Tools and Applications, 2023, 1–19.
- [23] Sobhana M., et al.: A Hybrid Machine Learning Approach for Performing Predictive Analytics on Road Accidents. 6th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), 2022.
- [24] Upadhyay D., et al.: Intrusion detection in SCADA based power grids: Recursive feature elimination model with majority vote ensemble algorithm. IEEE Transactions on Network Science and Engineering 8(3), 2021, 2559–2574.
- [25] Yan J., et al.: Relationship between Highway Geometric Characteristics and Accident Risk: A Multilayer Perceptron Model (MLP) Approach. Sustainability 15(3), 2023, 1893.
- [26] Yin Y., et al.: SE-GRU: Structure Embedded Gated Recurrent Unit Neural Networks for Temporal Link Prediction. IEEE Transactions on Network Science and Engineering 9(4), 2022, 2495–2509.
- [27] Zarei M., Hellinga B., Izadpanah P.: CGAN-EB: A non-parametric empirical Bayes method for crash frequency modeling using conditional generative adversarial networks as safety performance functions. International Journal of Transportation Science and Technology 12(3), 2023, 753–764.
- [28] Zheng H., et al.: A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 22(11), 2020, 6910–6920.
- [29] Road Accidents in Malaysia: Top 10 Causes & Prevention. Kurnia, 21 Sept. 2022 [http://www.kurnia.com/blog/road-accidents-causes].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad9895bf-7abb-4c6f-a8b1-423c225636e5