Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Weryfikacja wagi różnych zadań naukowych przez nauczycieli chemii poprzez analizę ocen studentów
Języki publikacji
Abstrakty
Learning tasks are a great motivation tool in chemistry teaching, necessary in the exposure and fixation part of a teaching process, and also often used when diagnosing the depth and type of student knowledge. Our research analysed the relationship between the student assessment in chemistry and their success in solving memory, algorithmic and conceptual tasks at symbolic, submicroscopic and macroscopic levels. The testing focused on chemical equilibrium, because this topic is appropriate to design and test the tasks. The collected data was evaluated by one-factor ANOVA analysis. We expected that, in comparison to average and weak learners, the excellent ones should be significantly more successful in tackling all the types of tasks and at all levels. However, our findings indicate that this assumption is invalid in the case of conceptual tasks, i.e. the understanding the depth of chemical concepts does not always correlate with the student assessment.
Czasopismo
Rocznik
Tom
Strony
89--92
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
autor
- Department of Didactics in Science, Psychology and Pedagogy, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republik, phone +421260296311
autor
- Department of Didactics in Science, Psychology and Pedagogy, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republik, phone +421260296311
autor
- Department of Didactics in Science, Psychology and Pedagogy, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republik, phone +421260296311
Bibliografia
- [1] Johnstone AH. Introduction. In: Wood C, Sleet R, editors. Creative Problem Solving in Chemistry. London: The Royal Society of Chemistry; 1993. ISBN: 9781870343282.
- [2] Anderson LW, Krathwohl DR, Airasian PW, Cruikshank KA, Mayer RE, Pintrich PR, et al. A Taxonomy for Learning Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives (complete edition). New York: Longman; 2001. ISBN: 9780321084057.
- [3] Reid N, Yang MJ. The solving of problems in chemistry: the more open-ended problems. Res Sci Tech Educ. 2002;20(1):83-98. DOI: 10.1080/02635140220130948.
- [4] Tobias S. They´re not Dumb. They´re Different: Stalking the Second Tier. Research Corporation: Tucson. AZ, 1994. ISBN: 9780963350404.
- [5] Nakhleh MB. Are our students conceptual thinkers or algorithmic problem solvers? J Chem Educ. 1993;70(1):52-5. DOI: 10.1021/ed070p52.
- [6] Papaphotis G, Tsaparlis G. Conceptual versus algorithmic learning in high school chemistry: The case of basic quantum chemical concept. Chem Educ Res Pract. 2008; 9(4):332-40. DOI: 10.1039/b818468m.
- [7] Cracolice MS, Deming JC, Ehlert B. Concept learning versus problem solving: A cognitive difference. J Chem Educ. 2008;85(6):873-8. DOI: 10.1021/ed085p873.
- [8] Cetin-Dindar A, Omer Geban O. Development of a three-tier test to assess high school students’ understanding of acids and bases. Proc Soc Behav Sci. 2011;15:600-4. DOI: 10.1016/j.sbspro.2011.03.147.
- [9] Habiddin H, Page EM. Development and validation of a four-tier diagnostic instrument for chemical kinetics (FTDICK). Indones J Chem. 2019;19:720-36. DOI: 10.22146/ijc.39218.
- [10] Lawson AE. Predicting science achievement: The role of developmental level, disembedding ability, mental capacity, prior knowledge and beliefs. J Res Sci Teach. 1983;20(2):117-29. DOI: 10.1002/tea.3660200204.
- [11] Niaz M, Robinson WR. Teaching algorithmic problem solving or conceptual understanding: Role of developmental level. mental capacity and cognitive style. J Sci Educ Technol. 1993;2(2):407-16. DOI: 10.1007/bf00694529.
- [12] Surif J, Ibrahim NH, Dalim SF. Problem solving: algorithms and conceptual and open-ended problems in chemistry. In: 5th World Conference on Educational Sciences. Book Series: Proc Soc Behav Sci. Amsterdam: Elsevier. 2014;116:4955-63. DOI: 10.1016/j.sbspro.2014.01.1055.
- [13] Chiu MH. Algorithmic problem solving and conceptual understanding of chemistry by students at a local high school in Taiwan. Proc Natl Sci Counc. 2001;11(1):20-38. Available from: https://ejournal.stpi.narl.org.tw/index/items/download?viId=A384FBF4-F44C-47DD-A8D4-5353BAEE1490.
- [14] Bodner GM. The role of algorithms in teaching problem solving. J Chem Educ. 1987;64(6):513-4. DOI: 10.1021/ed064p513.
- [15] Frank DV, Baker CA, Herron JD. Should students always use algorithms to solve problems? J Chem Educ. 1987;64(6):514-5. DOI: 10.1021/ed064p514.
- [16] Yavuz Mumcu H, Suheda Yildiz S. The investigation of algorithmic thinking skills of fifth and sixth marks at a theoretical dimension. J Math Educ. 2018;3(1):41-8. Available from: https://pdfs.semanticscholar.org/1475/c3401d083b2e0b5a85637500b023300fdc12.pdf.
- [17] Nurrenbern SA, Pickering M. Concept learning versus problem solving: is there a difference? J Chem Educ. 1987;64(6):508. DOI: 10.1021/ed064p508.
- [18] Nuzulia, Hasan M, Ismayani A. Assessing conceptual and algorithmic understanding of students in senior high school. J Phys. Conf Series. 2018; 1088.012092. DOI: 10.1088/1742-6596/1088/1/012092.
- [19] Niaz M. Relationship between student performance on conceptual and computational problems of chemical equilibrium. Int J Sci Educ. 1995;17(3):343-55. DOI: 10.1080/0950069950170306.
- [20] Sawrey BA. Concept learning versus problem solving: Revisited. J Chem Educ. 1990;67(3):253. DOI: 10.1021/ed067p253.
- [21] Herron JD, Nurrenbern SA. Chemical education research: Improving chemistry learning. J Chem Educ. 1999;76(10):1354-61. DOI: 10.1021/ed076p1353.
- [22] Johnstone AH. Why is science difficult to learn? Things are seldom what they seem. J Comp Assist Learning. 1991;7(2):75-83. DOI: 10.1111/j.1365-2729.1991.tb00230.x.
- [23] Garnett PJ, Hacking MW. Students’ alternative conceptions in chemistry: a review of research and implications for teaching and learning. Stud Sci Educ. 1995;25(1):69-95. DOI: 10.1080/03057269508560050.
- [24] Calyk M, Ayas A, Ebenezer JV. A review of solution chemistry studies: Insights into students’ conceptions. J Sci Educ Technol. 2005;14:29-50. DOI: 10.1007/s10956-005-2732-3.
- [25] Prokša M, Haláková Z, Drozdíková A. Chemical equilibrium in terms of its conceptual understanding in the context of submicroscopic, macroscopic and symbolic interpretation by learners. Science and Technology Education: Engaging the New Generation. Proc 2nd Int Baltic Symp Sci Technol Educ (BalticSTE 2017). Siauliai: Scientia Socialis. 2017; 104-7. ISBN: 9786099551340.
- [26] Prokša M, Drozdíková A, Haláková Z. Learners’ understanding of chemical equilibrium at submicroscopic, macroscopic and symbolic levels. Chem Didact Ecol Metrol. 2018;23(1-2):97-111. DOI: 10.1515/cdem-2018-0006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad94ffac-6f33-4230-bb71-ce63dfd67a4b