PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The MEMS-based barometric altimeter inaccuracy and drift phenomenon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MEMS technology has made sensors for measuring barometric pressure and altitude above sea level very cheap and widely used in many consumer electronic devices. This paper presents a theoretical analysis of the sources and types of errors in the barometric altimeter using the standard atmosphere model (ISA). Methods for correcting principal errors caused by non-standard sea level conditions are described and compared. A method of correcting errors in the case of altimeter horizontal movement to the air column and total pressure measurement was proposed. It was compared with another method known from the literature. In the numerical experiment, data recorded by a bicycle computer equipped with a MEMS-based barometric altimeter was analyzed. As the GPS data of the route covered was also known, it was possible to compare the recorded altimeter data with the heights determined from the digital terrain model (DTM), which in this case were considered accurate. The error of the measured altitude calculated in this way was tried to be divided into the principal error, the external error caused by the sensor movement, and the barometer drift. Hence, a numerical experiment was carried out in which, based on the recorded data, an attempt was made to reconstruct non-standard sea level conditions and the impact of speed on the sensor measurements. Furthermore, a method of solving such a reverse problem was proposed. The results of the presented studies can be used in the design of systems correcting the indications of barometric altimeters. The accuracy of the altitude measurement is especially important for small controlled flying objects (UAH) and when recording the route of vehicles moving on the ground.
Rocznik
Tom
Strony
141--162
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
Bibliografia
  • 1. Berberan-Santos M., E.N. Bodunov, L. Pogliani. 1996. „On the barometric formula”. Am. J. Phys. 65: 404.
  • 2. Chin E. Lin, Wei-Cheng Huang, Chin-Chung Nien. 2011. „MEMS-Based Air Data Unit with Real Time Correction for UAV Terrain Avoidance”. Journal of Aeronautics, Astronautics and Aviation, Series A 43(2): 103-110.
  • 3. Diston D.J. 2009. Computational Modelling and Simulation of Aircraft and the Environment: Platform Kinematics and Synthetic Environment. Volume 1. John Wiley & Sons, Ltd. ISBN: 978-0-470-01840-8.
  • 4. Dobyne John. 1988. „The Accuracy of Barometric Altimeters with Respect to Geometric Altitude”. Proceedings of the International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1988). Colorado Spring, CO, September 1988. P. 451-459.
  • 5. Eswaran P., S. Malarvizhi. 2012. „Design Analysis of MEMS Capacitive Differential Pressure Sensor for Aircraft Altimeter”. International Journal of Applied Physics and Mathematics 2(1): 14-20.
  • 6. Makoto Tanigawa, Henk Luinge, Linda Schipper, Per Slycke. 2008. „Drift-Free Dynamic Height Sensor using MEMS IMU Aided by MEMS Pressure Sensor”. In: 2008 5th Workshop on Positioning, Navigation and Communication. Conference Paper. 27-27 March 2008. Hannover, Germany. DOI: 10.1109/WPNC.2008.4510374. IEEE Xplore.
  • 7. Nakanishi, H., S. Kanata, T. Sawaragi. 2012. „GPS-INS BARO hybrid navigation system taking into account ground effect for autonomous unmanned helicopter”. IEEE International Symposium on Safety, Security, and Rescue Robotics: 1-6.
  • 8. Popowski S., W. Dąbrowski. 2008. „An Integrated Measurement of Altitude and Vertical Speed for UAV”. Transport and Engineering. Transport. Aviation Transport. Scientific Proceedings of Riga Technical University, Series 6, N27. Riga, RTU/2008. ISSN: 1407-8015.
  • 9. Sabatini, Angelo Maria, Vincenzo Genovese. 2013. „A Stochastic Approach to Noise Modeling for Barometric Altimeters”. Sensors 13(11): 15692-15707. DOI: 10.3390/s131115692.
  • 10. Seo Jaewon, Lee Jang Gyu, Chan, Gook Park. 2004. „Bias suppression of GPS measurement in inertial navigation system vertical channel”. Position Location and Navigation Symposium: 143-147.
  • 11. Szymanski Zbigniew, Stanislaw Jankowski, Jan Szczyrek. 2012. "Reconstruction of environment model by using radar vector field histograms.". Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. Proc. of SPIE 8454: 845422. DOI: 10.1117/12.2001354.
  • 12. U.S. Standard Atmosphere. 1976. U.S. Government Printing Office, Washington, D.C.
  • 13. Whang Ick Ho, Ra Won Sang. 2007. „Barometer error identification filter design using sigma point hypotheses”. International Conference on Control, Automation and Systems: 1410-1415.
  • 14. Xue Bao, Zhi Xiong, Shouzhao Sheng, Yijie Dai, Sheng Bao, Jianye Liu. 2017. „Barometer Measurement Error Modeling and Correction for UAH Altitude Tracking”. 29th Chinese Control and Decision Conference (CCDC). IEEE.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad915281-aa62-4136-8fda-ec6e516040d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.