PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Korelacja między krytycznymi parametrami cieczy i temperaturą początku krystalizacji dla amorficznych stopów na bazie Al
Języki publikacji
EN
Abstrakty
EN
Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.
Twórcy
autor
  • Pohang University of Science and Technology (Postech), Center for Advanced Aerospace Materials, Pohang, Korea
  • Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments, Taian, China
  • Shandong Agricultural University, Taian, China
autor
  • Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments, Taian, China
  • Shandong Agricultural University, Taian, China
autor
  • Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments, Taian, China
  • Shandong Agricultural University, Taian, China
autor
  • Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments, Taian, China
  • Shandong Agricultural University, Taian, China
autor
  • Korea Institute of Materials Science (Kims), Changwon, Korea
autor
  • Pohang University of Science and Technology (Postech), Center for Advanced Aerospace Materials, Pohang, Korea
Bibliografia
  • [1] H. S. Chen, D. Turnbull, J. Chem. Phys. 48, 2560 (1968).
  • [2] M. Tavoosi, F. Karimzadeh, M.H. Enayati, S. Lee, H.S. Kim, Met. Mater. Int. 19, 901 (2013).
  • [3] H. S. Kim, Mater. Sci. Eng. A 304, 327 (2001).
  • [4] C. A. Angell, J. Non-Cryst. Solids 73, 1 (1985).
  • [5] Q. Qin, G. B. McKenna, J. Non-Cryst. Solids 352, 2977 (2006).
  • [6] J. C. Qiao, J. M. Pelletier, Q. Wang, W. Jiao, W. H. Wang, Intermetallics 19, 1367 (2011).
  • [7] X. F. Bian, B. A. Sun, L. N. Hu, Phys. Lett. A 335, 61 (2005).
  • [8] F. E. Luborsky, H. H. Liebermann, Appl. Phys. Lett. 33, 233 (1978).
  • [9] V. A. Khonik, K. Kitagawa, H. Mori, J. Appl. Phys. 87, 8440 (2000).
  • [10] S. W. Nam, W. T. Kim, D. H. Kim, T. S. Kim, Met. Mater. Int. 19, 205 (2013).
  • [11] J. Guo, X. F. Bian, J. Alloys Compds. 504S, S205 (2010).
  • [12] O.V. Mazurin, Glass Phys. Chem. 33, 22 (2007).
  • [13] J. Steinberg, S. Tyagi, A. E. Lord Jr, Acta Metall. 29, 1309 (1981).
  • [14] H. Chiriac, M. Tomut, M. Grigorica, J. Non-Cryst. Solids 205-207, 504 (1996).
  • [15] V. N. Novikov, Y. Ding, A. P. Sokolov, Phys. Rev. E 71, 061501-1-12 (2005).
  • [16] B. A. Sun, X. F. Bian, J. Hu, T. Mao, Y. Zhang, Mater. Character. 59, 820 (2008).
  • [17] K. K. Song, X. F. Bian, X. Q. Lv, M. T. Xie, R. Jia, J. Appl. Phys. 105, 024304 (2009).
  • [18] B. A. Sun, The study of superheated melt fragility and glass-forming ability for Al-based alloys, M.D. thesis, Shandong University, China, 2007, p. 40.
  • [19] Q. G. Meng, J. K. Zhou, J. G. Li, Mater. Chem. Phys. 102, 39 (2007).
  • [20] J. Z. Sun, X. F. Bian, Y. W. Bai, Procedia Engineering 16, 755 (2011).
  • [21] T. Mao, X. F. Bian, X. Y. Xue, Y. N. Zhang, J. Guo, B.A. Sun, Physica B 387, 1 (2007).
  • [22] X. L. Li, On the thermodynamic representation of fragility of metallic glass-forming liquids, Doctoral Dissertation, Shandong University, China, 2010.
  • [23] S. J. Hong, T. S. Kim, H. S. Kim, W. T. Kim, B. S. Chun, Mater. Sci. Eng. A 271, 469 (1999).
  • [24] M. Y. Song, S. N. Kwon, D. R. Mumm, H. R. Park, Met. Mater. Int. 19, 309 (2013).
  • [25] S.-H. Hong, M.Y. Song, Met. Mater. Int. 19, 1145 (2013).
  • [26] H. Kim, S-W. Kim, S-H. Yoon, S. Yi, Korean J. Met. Mater. 52, 129 (2014).
  • [27] S. C. Yoon, S. G. Moon, K. Y. Sohn, W-W. Park, Korean J. Mater. 52, 649 (2014).
  • [28] X. F. Bian, J. Guo, X. Q. Lv, X. B. Qin, C. D. Wang, Appl. Phys. Lett. 91, 221910 (2007).
  • [29] T. Scopigno, G. Ruocco, F. Sette, G. Monaco, Science 302, 849 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad8ed102-f37a-4b9e-9cc2-b569e813ac22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.