PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An experimental study on the development of multipurpose biomass burner for cooking stove and thermal generator for household application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study proposes a novel concept of a solid biomass burner for household applications. The designed biomass stove is a multipurpose burner that can be used as a cooking stove and thermal generator. It works as a basic model of a biomass cooking stove and is coupled with a coil heat exchanger for thermal generation. The experimental evaluation is conducted by using the time-to-boil (TTB) method to measure the effective energy that can be harnessed from the combustion process. It shows that the maximum temperature outlet from the coil heat exchanger is 62.2 °C. The effective energy uptake for the coil heat exchanger is 41.9%, whereas the overall energy uptake, including the kettle, is obtained by more than 50%. Therefore, the proposed model can improve the efficiency of solid biomass burners for household ware.
Twórcy
  • Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah Jagakarsa, DKI, Jakarta 12640, Indonesia
autor
  • Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah Jagakarsa, DKI, Jakarta 12640, Indonesia
  • Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah Jagakarsa, DKI, Jakarta 12640, Indonesia
Bibliografia
  • [1] I.M. Gandidi, A. Wiyono, E.T. Berman, N.A. Pambudi, Experimental upgrading of liquid crude oil obtained from calophyllum inophyllum by two-stage pyrolysis, Case Stud. Therm. Eng. 16 (2019) 100544. https://doi.org/10.1016/j.csite.2019.100544.
  • [2] M. Badaruddin, Indonesia Rejoining OPEC: Dynamics of the Oil Importer and Exporter Countries, JAS (Journal ASEAN Stud. 3 (2016) 116. https://doi.org/10.21512/jas.v3i2.841.
  • [3] Ismail, R.A. Rahman, G. Haryanto, E.A. Pane, The Optimal Pitch Distance for Maximizing the Power Ratio for Savonius Turbine on Inline Configuration, Int. J. Renew. Energy Res. 11 (2021) 595–599. https://doi.org/10.20508/ijrer.v11i2.11862.g8181.
  • [4] F. Kanyako, I. Janajreh, Implementation and economical study of HAWT under different wind scenarios, Sustain. Cities Soc. 15 (2015) 153–160. https://doi.org/10.1016/j.scs.2014.11.002.
  • [5] D. Rahmalina, D.C. Adhitya, R.A. Rahman, Ismail, Improvement the Performance of Composite Pcm Paraffin-Based Incorporate With Volcanic Ash As Heat Storage for Low-Temperature Application, EUREKA, Phys. Eng. 2022 (2022) 53–61. https://doi.org/10.21303/2461-4262.2022.002055.
  • [6] Z. Zhang, Y. Zhang, Y. Zhou, R. Ahmad, C. Pemberton-Pigott, H. Annegarn, R. Dong, Systematic and conceptual errors in standards and protocols for thermal performance of biomass stoves, Renew. Sustain. Energy Rev. 72 (2017) 1343–1354. https://doi.org/10.1016/j.rser.2016.10.037.
  • [7] M. Ahiduzzaman, A.K.M.S. Islam, Development of Biomass Stove for Heating up Die Barrel of Rice Husk Briquette Machine, Procedia Eng. 56 (2013) 777–781. https://doi.org/10.1016/j.proeng.2013.03.194.
  • [8] D. Champier, J.P. Bedecarrats, M. Rivaletto, F. Strub, Thermoelectric power generation from biomass cook stoves, Energy. 35 (2010) 935–942. https://doi.org/10.1016/j.energy.2009.07.015.
  • [9] M. Rasoulkhani, M. Ebrahimi-Nik, M.H. Abbaspour-Fard, A. Rohani, Comparative evaluation of the performance of an improved biomass cook stove and the traditional stoves of Iran, Sustain. Environ. Res. 28 (2018) 438–443. https://doi.org/10.1016/j.serj.2018.08.001.
  • [10] T. Vitoussia, G. Leyssens, G. Trouvé, A. Brillard, A. Kemajou, E. Njeugna, J.-F. Brilhac, Analysis of the combustion of pellets made with three Cameroonian biomass in a domestic pellet stove, Fuel. 276 (2020) 118105. https://doi.org/10.1016/j.fuel.2020.118105.
  • [11] V.S. Shaisundaram, M. Chandrasekaran, S. Sujith, K.J. Praveen Kumar, M. Shanmugam, Design and analysis of novel biomass stove, Mater. Today Proc. 46 (2021) 4054–4058. https://doi.org/10.1016/j.matpr.2021.02.569.
  • [12] L. Kütt, J. Millar, A. Karttunen, M. Lehtonen, M. Karppinen, Thermoelectric applications for Energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves, Renew. Sustain. Energy Rev. 98 (2018) 519–544. https://doi.org/10.1016/j.rser.2017.03.051.
  • [13] D. Maxwell, B.A. Gudka, J.M. Jones, A. Williams, Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove, Fuel Process. Technol. 199 (2020) 106266. https://doi.org/10.1016/j.fuproc.2019.106266.
  • [14] Y. Hou, B. Yang, S. Zhang, Y. Qi, X. Yu, 4E analysis of an integrated solar-biomass heating system: A case study in rural housing of northern China, Sustain. Energy Technol. Assessments. 53 (2022) 102794. https://doi.org/10.1016/j.seta.2022.102794.
  • [15] S. Kılıçkap, E. El, C. Yıldız, Investigation of the effect on the efficiency of phase change material placed in solar collector tank, Therm. Sci. Eng. Prog. 5 (2018) 25–31. https://doi.org/10.1016/j.tsep.2017.10.016.
  • [16] G. Ferla, P. Caputo, Biomass district heating system in Italy: A comprehensive model-based method for the assessment of energy, economic and environmental performance, Energy. 244 (2022) 123105. https://doi.org/10.1016/j.energy.2022.123105.
  • [17] M.P. Kshirsagar, V.R. Kalamkar, Application of multi-response robust parameter design for performance optimization of a hybrid draft biomass cook stove, Renew. Energy. 153 (2020) 1127–1139. https://doi.org/10.1016/j.renene.2020.02.049.
  • [18] M. Deng, P. Li, M. Shan, X. Yang, Characterizing dynamic relationships between burning rate and pollutant emission rates in a forced-draft gasifier stove consuming biomass pellet fuels, Environ. Pollut. 255 (2019) 113338. https://doi.org/10.1016/j.envpol.2019.113338.
  • [19] M.P. Kshirsagar, V.R. Kalamkar, R.R. Pande, Multi-response robust design optimization of natural draft biomass cook stove using response surface methodology and desirability function, Biomass and Bioenergy. 135 (2020) 105507. https://doi.org/10.1016/j.biombioe.2020.105507.
  • [20] K.L. Dickinson, R. Piedrahita, E.R. Coffey, E. Kanyomse, R. Alirigia, T. Molnar, Y. Hagar, M.P. Hannigan, A.R. Oduro, C. Wiedinmyer, Adoption of improved biomass stoves and stove/fuel stacking in the REACCTING intervention study in Northern Ghana, Energy Policy. 130 (2019) 361–374. https://doi.org/10.1016/j.enpol.2018.12.007.
  • [21] Himanshu, O.P. Kurmi, S. Jain, S.K. Tyagi, Performance assessment of an improved gasifier stove using biomass pellets: An experimental and numerical investigation, Sustain. Energy Technol. Assessments. 53 (2022) 102432. https://doi.org/10.1016/j.seta.2022.102432.
  • [22] P. Jie, W. Zhao, F. Yan, X. Man, C. Liu, Economic, energetic and environmental optimization of hybrid biomass gasification-based combined cooling, heating and power system based on an improved operating strategy, Energy. 240 (2022) 122730. https://doi.org/10.1016/j.energy.2021.122730.
  • [23] S. Wu, T. Yan, Z. Kuai, W. Pan, Thermal conductivity enhancement on phase change materials for thermal energy storage: A review, Energy Storage Mater. 25 (2020) 251–295. https://doi.org/10.1016/j.ensm.2019.10.010.
  • [24] R.A. Rahman, A.H. Lahuri, Ismail, Thermal stress influence on the long-term performance of fast-charging paraffin-based thermal storage, Therm. Sci. Eng. Prog. 37 (2022) 101546. https://doi.org/10.1016/j.tsep.2022.101546.
  • [25] Ismail, J. John, E.A. Pane, R. Maulana, R.A. Rahman, A. Suwandi, Experimental evaluation for the feasibility of test chamber in the open-loop wind tunnel, WSEAS Trans. Fluid Mech. 16 (2021) 120–126. https://doi.org/10.37394/232013.2021.16.12.
  • [26] D. Adanta, I. Syofii, D.P. Sari, A. Wiyono, Performance of Pico Scale Turgo Turbine in Difference the Nozzle Diameter, Int. J. Fluid Mach. Syst. 15 (2022) 130–136. https://doi.org/10.5293/IJFMS.2022.15.1.130.
  • [27] F. Afsharpanah, S.S. Mousavi Ajarostaghi, K. Sedighi, The influence of geometrical parameters on the ice formation enhancement in a shell and double coil ice storage system, SN Appl. Sci. 1 (2019) 1264. https://doi.org/10.1007/s42452-019-1317-3.
  • [28] M. Deng, P. Zhang, H. Yang, R. Ma, Directions to improve the thermal efficiency of household biomass cookstoves: A review, Energy Build. 278 (2022) 112625. https://doi.org/10.1016/j.enbuild.2022.112625.
  • [29] Ismail, A.T. Mulyanto, R.A. Rahman, Development of Free Water Knock-Out Tank By Using Internal Heat Exchanger for Heavy Crude Oil, EUREKA, Phys. Eng. 2022 (2022) 77–85. https://doi.org/10.21303/2461-4262.2022.002502.
  • [30] B. Lamrani, A. Draoui, Modelling and simulation of a hybrid solar-electrical dryer of wood integrated with latent heat thermal energy storage system, Therm. Sci. Eng. Prog. 18 (2020) 100545. https://doi.org/10.1016/j.tsep.2020.100545.
  • [31] Q. Zhang, Y. Ji, L. Jin, TECHNICAL ECONOMY FEASIBILITY ANALYSIS of BIOMASS STOVE HEATING SYSTEM, Energy Procedia. 143 (2017) 144–149. https://doi.org/10.1016/j.egypro.2017.12.662.
  • [32] N.P. Adhikari, R.C. Adhikari, Geospatial mapping of biomass supply and demand for household Energy management in Nepal, Dev. Eng. 6 (2021) 100070. https://doi.org/10.1016/j.deveng.2021.100070.
  • [33] A.T. Kole, B.A. Zeru, E.A. Bekele, A.V. Ramayya, Design, development, and performance evaluation of husk biomass cook stove at high altitude condition, Int. J. Thermofluids. 16 (2022) 100242. https://doi.org/10.1016/j.ijft.2022.100242.
  • [34] G. Huang, S. Wang, X. Chang, S. Cai, L. Zhu, Q. Li, J. Jiang, Emission factors and chemical profile of I/SVOCs emitted from household biomass stove in China, Sci. Total Environ. 842 (2022) 156940. https://doi.org/10.1016/j.scitotenv.2022.156940.
  • [35] A. Allouhi, S. Rehman, M. Krarti, Role of energy efficiency measures and hybrid PV/biomass power generation in designing 100% electric rural houses: A case study in Morocco, Energy Build. 236 (2021) 110770. https://doi.org/10.1016/j.enbuild.2021.110770.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad8ca6a6-02ba-49a4-a884-e38376e684ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.