Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Air springs applied as shock damping elements are often found in the design of variety modern truck and trailer suspensions. They can also be found as damping and stabilizing suspension elements in the passenger cars and other machines. The advantage of air springs, compared to steel coil springs or leaf springs, is a better damping quality in a wide range of frequencies. The air springs stiffness can be regulated according to the requirements and working conditions. The applied air springs also allow to stabilize the distance between the vehicle body and road level in function of loading. Some proposals of vehicle suspension models can be found in technical literature where the air spring is the main elastic subassembly. Mathematical model descriptions of the suspension with air spring for vehicles apply the thermodynamic laws and relationships between the mechanical forces of cooperating suspension elements, parts geometry (suspension arms), material stiffness (reinforced rubber) and other properties (damping). The results of own investigations on the suspension model of an air spring for cargo trailer have been taken into consideration in this paper. The presented suspension model was applied to design the frame construction of a light stanchion trailer where aerodynamic drag and construction mass were reduced. The suspension model of air springs for a trailer was applied for frame loads evaluation of the light trailer. It was also used for the strength analysis of the frame construction with the reduced mass. The estimated frame loads such as torque, normal forces and bending moments were used for strength estimation of the upgraded trailer frame.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 2020221
Opis fizyczny
Bibliogr. 18 poz., il. kolor., 1 fot., rys., wykr.
Twórcy
autor
- Redos Trailers sp. z o.o. ul. Kolejowa 33A, 64-300 Nowy Tomyśl, Poland
autor
- Poznan University of Technology, Institute of Applied Mechanics, ul. Jana Pawła II 24, 60-965 Poznań
autor
- Poznan University of Technology, Institute of Applied Mechanics, ul. Jana Pawła II 24, 60-965 Poznań
Bibliografia
- 1. A. Błażejewski, S. Głowiński, I. Maciejewski, The wavelet transfer function of a human body-seat system, Journal of Low Frequency Noise, Vibration and Active Control 38 (2) (2019), 817-825.
- 2. A. Masliiev, Y. Makarenko, V. Masliiev, Study of an air spring with improved damping of vibrations, Econtechmod. An International Quarterly Journal, Vol. 4. No. 4 (2015), 59-64.
- 3. A. Ossowski, The impact response of an airplane pneumatic suspension, Vibrations in Physical Systems, vol. 23 (2008).
- 4. H. Liu and J. C. Lee, Model development and experimental research on an air spring with auxiliary reservoir, International Journal of Automotive Technology, Vol. 12, No. 6 (2011), pp. 839−847.
- 5. H. Zhu, J. Yang, Y. Zhang, X. Feng, A novel air spring dynamic model with pneumatic thermodynamics, effective friction and viscoelastic damping, Journal of Sound and Vibration 408 (2017) 87-104.
- 6. J. Gardulski, Ł. Konieczny, Wpływ obciążenia statycznego na tłumienie kolumny hydropneumatycznej, Diagnostyka’4 (40)/2006.
- 7. K. Kilikevičienė, J. Skeivalas, A. Kkilikevičius, R. Pečeliūnas, G. Bureika, The analysis of bus air spring condition influence upon the vibration signals at bus frame, Eksploatacja i Niezawodnosc - Maintenance and Reliability Vol.17, No. 3, (2015).
- 8. K. Sim, H. Lee, J. Won Yoon, Ch. Choi, S.-H. Hwang, Effectiveness evaluation of hydro-pneumatic and semi-active cab suspension for the improvement of ride comfort of agricultural tractors, Journal of Terramechanics 69 (2017) 23-32.
- 9. M. Pękalak, S. Radkowski, Gumowe element sprężyste, Państwowe Wydawnictwa Naukowe (1989) ISBN 83-01-08036-1.
- 10. M. Obst, D. Kurpisz, K. Mencel, Energy Based Mechanical Characteristics of Polymers POM-C, PET, PA6, PVC, PVDF, Machine Dynamics Research, Vol. 39, No 4 (2015), 93-106.
- 11. P. Kaššay, J. Homišin, M. Urbanskӯ, Formulation of mathematical and physical model of pneumatic flexible shaft couplings, Zeszyty Naukowe Politechniki Śląskiej (2012). Seria: TRANSPORT z. 76 Nr kol. 1865.
- 12. P. Krishnasamy, J. Jayaraj, D. John, Experimental Investigation on Road Vehicle Active Suspension, Journal of Mechanical Engineering 59 (2013)10, 620-625.
- 13. P.K. Wong, Z. Xie, J. Zhao, T. Xu and F. He, Analysis of automotive rolling lobe air spring under alternative factors with finite element model, Journal of Mechanical Science and Technology 28 (12) (2014) 5069~5081.
- 14. S. J. Lee, Development and analysis of an air spring model, International Journal of Automotive Technology, Vol. 11, No. 4 (2010), pp. 471−479.
- 15. T. Kiczkowiak, I. Maciejewski, T. Krzyżański, Wybrane problemy optymalizacji pneumatycznego zespołu amortyzującego, PAK vol. 56, nr 4/2010.
- 16. T. Wegner, D. Kurpisz, An Energy-based method in phenomenological description of mechanical properties of nonlinear materials under plane stress, Journal of theoretical and applied mechanics 55, pp. 129-139, (2017) Warsaw.
- 17. W.-N. Bao, L. Chen, Y. Zhang and Y.-S. Zhao, Fuzzy adaptive sliding mode controller for an air spring active suspension, International Journal of Automotive Technology, Vol. 13, No.7 (2012), pp. 1057−1065.
- 18. X. Zeng, L. Zhang, Y. Yu, M. Shi and J. Zhou, The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures, Appl. Sci. 74, 6, (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad8a951d-b987-410c-b80c-a43190ff1bcd