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Abstract

This paper presents the computer simulation tecieniglated to the reliability of an object underiable
operation conditions. The considered object opamngtrocess is modelled using semi-Markov proceasdsts
reliability is analysed by application of the camaial reliability functions in its different opdran states. The
backgrounds and procedures of the Monte Carlo sl method application to an object at variable
condition reliability analysis are proposed and ligobto reliability evaluation of an exemplary obie
Consequently, under arbitrarily assumed the pamnmaif this exemplary object operation process igsd
conditional reliability functions, using the progos Monte Carlo simulation procedures, the transient
probabilities of the exemplary object operationgass at the particular operation states and itenditional
reliability function are determined. Further, theelr programming is introduced and proposed tiabiity
optimization of an object at variable operation ditons and the optimal transient probabilities thé
exemplary object operation process at the partioypeeration states and its optimal uncondition&ldity
function are determined. Finally, some practicajjgastions on the modification of the exemplary obje
operation process improving its reliability are poeed.

1. Introduction fixed momentt, t{0+e), may be at one of,

The reliability function of an object subjected to VvUN, different operations stateg, b=12,...v.
varying in time its operation process analytical Consequently, we mark by(t), tD<0,+oo>, the
determination very often leads to complicated
formulae and therefore it is sometimes difficult to
implement modeling, prediction and optimization
using this way [1]- [7]. The Monte Carlo simulation set{z,z,,...,z,} of the object operation states. We

method is a tool that sometimes allows to simplify assume a semi-Markov model [2], [4] of the object
solving this problem [8]. The analytical approaoh t operation proces<Z(t) and we mark byé, its

systems reliability analysis is shortly presentad a . : . .
next the background of the computer simulation random conditional sojourn times at the operation

modelling method for such objects reliability —States z,, when its next operation state i,
assessment are is given. The Monte Carlo method ish,| =12,...,v, b#1.

practically applied to examine the reliability of a Consequently, the operation process may be
exemplary object at variable operation conditions. described by the following parameters:
This way, the main reliability and operation pra&es . the vector of the initial probabilities of the otje

characteristics of this exemplary object are found.  gneration proces(t) staying at the particular
Further, the optimal values of those charactesstic .
operations states at the momért0

are determined.

object operation process, that is a function of a
continuous variabld, taking discrete values at the

2. An object operation process [P, O] =[p; (0), P, (0),..., p, (O], 1)

We assume that an object during its operationeat th  where
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P, (0)=P(Z(0)=2,), b=12...v; )

- the matrix of the probabilities of the object
operation proces<(t }ransitions between the

operation stateg, andz , b, =12,...v, b#l

Pui P2 P
[Pyl =| P2 P22 17 P ©)
Pu  Pw Pw
wherep,, =0 for b=12,....,v;
- the matrix of the conditional distribution

functions of the object operation proceZét )
conditional sojourn times),, at the operation
states

Ha® Hip® - Hy @
[Hy ©),, =| 20 F20 - HaO)
Ha® Ho®) - H, 0
where
H, (1) = P(8, <t), Hy(t)=0, )

for bl =12,...v, b#I.
Having identified the probabilitieg,, defined by

hy (1) = . bl =12..v, b#l,

dea)
. (8)

are the conditional density functions of the object
operation proces<(t xonditional sojourn times

6,,b1=12..v,b#l, at the particular operation
states corresponding to the distribution functions
Hm“%

Further, the limit values of the object operation
processZ(t) transient probabilities at the particular

operation states

P, (t) =P(Z(t)=2,), b=12,...,1,

can be determined from the following relationship

.M
Py = lim Py (t) = ~———, b=12...v, ©)
t oo Zli
1=1
where M, are given by (6), while the steady

probabilities 7z, of the vector[r,],,, satisfy the
system of equations

[7,] =[] Py ]

> =1, (10)

where [ﬂb]Z[ﬂl,ﬂz,...,ﬂv] and the matri><[pb|] is
defined by (3).

(3) of transitions between the operation states and Other practically interesting characteristics oé th

the distributions of conditional sojourn times, ,
the mean value$/, of the object operation process
Z(t) unconditional sojourn time¢, b=12,...v,
at the particular operation states can be detednine
by

M, =E[6,] =5 p,M,, , b=12...0, (6)

where M, are the mean values of the conditional
sojourn timesg,, given by

M, = E[6,]= [th, (t)dt, (7)

bl =12,..v, b#l, and
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object operation procesZ(t) when the operation
time @ is sufficiently large, are its total sojourn
times éb at the particular operation stateg
b=12,....v, during the fixed object opetation time

that have approximately normal distribution witle th
expected value given by

M, = E[8,] = p,6, b=12,...v, (11)

where p, are given by (9).

3. Reliability of an object subjected to

varying operation conditions

We assume that every operation state of the object
operation proces<(t ,)t0(0+w), described in

section 2, have an influence on the object
reliability [4]. Therefore, the object reliabilitgt the
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particular operation state,, b=12,...v, can be
described using the conditional reliability functio

RO(t) = PT® >t]Z(t) = 2,), (12)

for tD<0,+oo), b=12,...v, that is the conditional

probability that the object conditional lifetimg®
is greater thart, while the object operation process
Z(t) is at the operation statg, b=12,...,v [4].

The relationship between the distribution function
F ®(t) of the object conditional lifetim& ® and

the object conditional reliability functioR® is
given by

FOWm=PT® <t]|Z(t)=2)=1-RO (), (13)

for t0(0,+), b=12,..v,

Further, we denote the object unconditional lifetim
by T and the unconditional reliability function of
the object by

R(t) = P(T >t), t0(0+). (14)

The relationship between the distribution function
F (t) of the object unconditional lifetim& and the

object unconditional reliability functionR(t) is
given by

Ft)=P(T<t)=1-P(T >t)=1-R(t), (15)
for t0{0, + o).

In the case when the object operation tigheis
large enough, the unconditional reliability functio

of the object is approximated by [4]
R(t) DX p,R® (1), t0(0+w), (16)
b=1

where p, ,b=12,...v, are the object operation
process limit transient probabilities given by (9).

Hence the mean value of the object unconditional

lifetime T is given by

HOS Pty )

where p, are the mean values of the object

conditional lifetimes T®® at the operation state
z,,b=12,...v, given by
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4 = [RP(t)t, b=12,..v, (18)
0

R®(t), b=12,...v, are defined by (12) ang,
are given by (9).

Whereas, the standard deviation of the object
unconditional lifetimeT is given by

o =/D[T] =, [2ft Rt)dt- 42, (19)

where R(t) is given by (14) angu is given by (17).

4. Monte Carlo simulation approach to an
object operation process modelling

We denote byz,(q )b=12,...,v, the realization of

the object operation process initial operationestdt
the momentt =0 generated from the distribution
defined by (1)- (2). This realization is generated
according to the formula

z, 0<qg<p,(0),
z,, p,0)=qg<p(0)+p,(0),

z,(q) = (20)

z, Sp©s=qsl
=1

where q is a randomly generated number from the
uniform distribution on the intervdl0, 1) .

We denote by z,(g ) 1=12..v, b#l, the
sequence of the realizations of the object operatio
process consecutive operation states generated from
the distribution defined by (3). Those realizations
are generated according to the formula

z,, 0=g<pyy,

Z3, PS9<Ppp* P,
z,(9) = : (21)

v-1 '
Zv’ Z pbi = gSl,
i=1
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2z, 0<9<py,
' b2 b-1
Zy ., Zipbi Sg<zipbi’
(9) = b1 bel 22
“ Zo1s Zipbi 59<Zipbi1 (22)
V-1
Z,, Z:lpbi <gs<l
for b=23...,v,
Zl’ OSg< pvl’
Z, PasO9<pPith:
z,(9)=1: : (23)
V-2
2y Zipvi SgSl

where g is a randomly generated number from the
uniform distribution on the intervl0,1) .

We denote by 44, bl=12..v,b#l,
i=12,...,n,, the realizations of theconditional
sojourn time g, of the object operation process
generated from the distributioH ,,, defined by (4),
where n, is the number of those sojourn time

realizations during the experiment tim@. Those
realizations are generated according to the forenula

6, =H.'(h), b1 =12,..v,bzl, (24)
where H_'(h) is the inverse function of the
distribution functionH,(t )and h is a randomly
generated number from the uniform distribution on
the interval(0,1) , which in the case of exponential
distribution

takes the following form
1
Gy =——In@-h), b1 =12..v,bZl. (26)

ay,

The exemplary realizations of the considered object
operation process including the realisations

6%, 62, ..., 6™ b 1=12..v,bzl (27
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is presented ifigure 1

. operation
v state
|
|
z, 7
(1)
632
z,
(1) 2)
621 : : 621
| I
2, 7 ! EE—
2 I o ! [
| 13 : |
_ L :
4 |
|
—
0 time

Figure 1.The exemplary sojourn times of the object
operation process

Having those realisations, it is possible to deteem
approximately the total sojourn time at the operati

state z, during the time of the experimerf
applying the formula

(28)

and the object operation process unconditional mean
sojourn times are given by

(29)

Further, the limit transient probabilities definegd b
(9) can be approximately obtained using the formula

v, 0=X8,. (30)

M=

o
11,

1

5. Monte Carlo ssmulation approach to an
object reliability modelling
The realizations of the object conditional lifetene

t® are generated according to the distribution (13),
i.e. they are generated by the sampling formula

t® =(FO ()" =[-RrO (1)), (31)
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where (F (b)(f))_l is the inverse function of the
functon F®(t) of the object
conditional lifetime T® defined by (13) which in

distribution

the case of exponential distribution takes the

following form
FO@t)=1-expA®1t],t20,b=12,....v, (32)

In the case of the above exponential distributton t
realisations of the object conditional lifetime&da
the following form

1
t® :—A(—b)ln(l— f), b=12,...v. (33)

where 1*) | are the failure rates according to (32)
and f is a randomly generated number from the

uniform distribution on the intervl0,1) .

/inputin [p, ioﬂ,[pb.],[ab.],w/

Takeg,, = —iln(l— h),
Q)

t®=-L - 1)
bl

v
Setj:=1
v

A

6. Procedures of Monte Carlo smulation
application to operation and reliability of an
object characteristics determination

The procedure is illustrated iffigure 2 At the
beginning, we fix the following parameters:
the numberN O N \ {O}of iterations (runs of the

simulation) equal to the number of the lifetime
realizations;

the vector of the initial probabilitiegp, (0)]
b=12...v, of the object operation process
Z(t) atthe moment = @lefined by (2);

the matrix of the probabilities [py ,]
b,I=12...v,b#l, of the object operation
process Z(t ) transitions between the various
object operation states defined by (3).

the matrix [ay ] @y 0(0,®), b1 =12..v,
b#1, of the intensities of the object operation
process transitions between the operation states
existing in (25);

the vector [A® ] b=12,...v, of the failure
rates A® 0(0,0) existing in (32);

7 OUTPUT: t, /
Yes ?
j>N

— (b)
tj .—tj +1
No

j=+1

Yes

Sett; =0
v
Generateq

v
z,(q)
v

£ ®

Generatef

Generateg

v

\ 4

z(9)

Generateh

Figure 2.Monte Carlo algorithm for an object reliabi

lityauation
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Next, we generate the realizations of tioaditional
sojourn times 6,,, b,1=12,...v,b#l, of the
object operation process defined by (24) according
to the formula (26). Further, we generate the

realisations T®, b=12,..v, of the object

conditional lifetimes according to the formula (33)
In the next step we introduce:
- JON\{0} as the subsequent iteration in the

main loop and sef = ;1
- 4,0(0), j=12..N the  object
unconditional lifetime realization and set= . 0

As the algorithm progresses, we draw a random
number q from the uniform distribution on the

as

interval (0,1). Based on this random value, the
realization

z,(q), b=12,..v,

of the object operation process initial operation
state at the momerit= & generated according to
the formula (20).

Next, we draw a random numbey uniformly
distributed on the unit interval. Concerning this
random value, the realization

z(9),1=12..v,1 b,

of the object operation process consecutive
operation state is generated according to the flarmu
21).

I(:ur)ther, we generate a random numbefrom the
uniform distribution on the intervdl0,1) , which we
put into the formula (26) obtaining the realisation
6,, b1 =12,....v,b#| . Subsequently, we generate
a random numberf uniformly distributed on the
unit interval, which we put into the formula (33)
obtaining the realisation®, b=12,...v. If the

realization of the empirical conditional sojourmé
is not greater than the realization of the object
conditional lifetime, we add to the object

unconditional lifetime realization; the valued,.
The realizationt; is recorded and is set as the

initial operation state.
We generate another random numbgré, f from

the uniform distribution on the interva(0,1)

obtaining the realizationsz (g ,) 8, and t®,
b1 =12,..v,b#l. Each time we compare the
realization of theconditional sojourn time4,, with
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the realization of the object conditional lifetira® .
If 6, is greater thari®®, we add to the sum of the
realizations of theonditional sojourn timed,, the

realisation t®, b=12,...v, and we obtain and
record an object unconditional lifetime realization
t;. Thus, we can proceed replacingith j +1 and

shift into the next iteration in the loop if<N In
the other case, we stop the procedure.

7. Optimization of an object operation
process and reliability at variable operation
conditions

The object operation process has significant
influence on its reliability [4]. According to (1,7the
mean valuey, of the object unconditional lifetimes
is determined by the limit values of transient
probabilities p,,b=12,...,v ,of the object operation
process at the operation states given by (30) laed t
mean values y,,b=12..v , of the object
conditional lifetimes given by (18). The
corresponding optimal valueg,,b=1212,....v of
the transient probabilites may be found
maximize the mean valug: of the unconditional
object lifetimes.

Therefore, the optimization problem can be
formulated as a linear programming model with the
objective function of the following form

to

LY (34)

where ipb:], M, 20, b=12..v, with the
b=1

following bound constraints for the unknown

transient probabilitiep,, b=12,....v,

12,... (35)

bbSprﬁb,b ,V,

where
0< Db <1 0< r)b <1 pb < r)b,sz,Z,...,v. (36)

The optimal value of the transient probabilitipg,

b=12,...,v, can be found after completing a few
steps.

First, we arrange the object conditional lifetime
mean values 4, ,b=12,...,v, in non-increasing
order
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My 2 Hy, 2.2 My (37)
where

b 0{12,..,v}, for i =12,...v. (38)
Next, we substitute

Xi =Py X =Py X =Py (39)

for i=122,..v, and we maximize with respect to
X, 1=212,...,v, the linear form (34) that after this
transformation takes the form

U= éxi My (40)
with the following bound constraints

X <X SX,i=12..V, (41)

X =1 (42)
where Hy o My 2 0, i=12,...v, are fixed mean

values of the object conditional lifetimes arrangred
non-increasing order and

) X(

X(
IA
)
I
H
N

(43)

are lower and upper bounds of the unknown

probabilitiesx; , i =12,...,v, respectively.
To find the optimal values ok, |=12,...v, we
define
Xx=Y%, §=1-X% (44)
i=1
and
o0 — S0 _— vl_lv AI_I"
X°=0, x"=0,X =YX, X =YX (45)
i=1 i=1
for | =12,...v.
Next, we find the largest value0{01,....v 3$uch
that
x'-x'"<y, (46)
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and we fix the optimal solution that maximize (39)
in the following way:
-if 1 =0, the optimal solution is

X, =y+x andx =X fori=23,..,; 47)
-if 0<1 <v, the optimal solution is

X, =% fori=212,...,1, X, =y-x +X' +X,,,

X =% for i=1+21+3..v; (48)
-if 1 =v, the optimal solution is

X =x fori=212,...,v. (49)
Finally, after making the inverse to (39)

substitution, we get the optimal limit transient
probabilities

Py =X fori=12,...v, (50)

that maximize the object mean lifetime defined by
the linear form (34), giving its maximum value in
the following form

(=3 Dty (51)

8. An exemplary object operation and
reliability evaluation and optimization

8.1. An object operation process

8.1.1. Analytical approach to an exemplary
object operation process analysis

We consider an exemplary object operatingy at4
operation stateg, z,, z; andz,. The probabilities

of the initial operation states of this object cigm
process are fixed arbitrarily in the following way

[p,(0)] = [021,010,029,040. (52)

The probabilities of the exemplary object operation
process Z(t ) transitions between the operation

statesz, and z, b, = 1234, b#| are also fixed
arbitrarily [4] and given in the matrix below

0 022 032 046
020 0 030 050
012 016 0 072|
048 022 030 O

[Pu]= (53)
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Moreover, we assume that the distribution functions
of the exemplary object operation process
conditional sojourn times measured in days are as
follows:

H,,(t) =1-exp[-0.0052t],
H,, (t) =1-exp[-0.0011t],
H,5(t) =1-exp[-0.0021],
H,,(t) =1-exp[-0.0021],
H,,(t) =1-exp[-0.005t],

H,,(t) =1-exp[-0.0033],
H,,(t) =1-exp[-0.0104t],
H ,,(t) =1-exp[-0.0031],
H 5 (t) =1-exp[-0.0123],
H ,,(t) =1-exp[-0.0020t],
H,,(t) =1-exp[-0.0182],

H,,(t) =1-exp[-0.0023], (54)

for t 0(0,+).

Applying (54) and (8) to the conditional
distributions given by (7), the conditional mean
values M, =E4,] bl=2234 of the
exemplary object sojourn times at the particular

operation states measured in days are fixed as
follows:

M, =192 M, =480 M, =20Q

M, =96 M, =81, M, =55

M, =870 M,, =480 M,, =300

M, =325 M,,=510 M, =438 (55)

Based on the formula (6) and applying (53)- (55),
the object operation process unconditional mean
sojourn times§g,, b=12,...,v, measured in days at

the particular operation states are given by

M, = E[6,]=28784, M, =E[6,]=7100,
M, = E[6,]=39720, M, = E[6,]=39960. (56)

Further, according to (10), the system of equations

{[771,7727”3,774] :[771-”21773-”4][pb|]4x4

T+, + M+, =1,

after considering (53), takes the form

212

m, = 020, + 01277, + 04871,
m, = 022m + 0167, + 0227,
11, = 032, + 03077, + 03077,
11, = 0467, + 05077, + 0.7277,
L+, I+, =1

The approximate solutions of the above system of
equations are:

n, £0236 71, 0.169

n,£0234 7, L0361 (57)

Further, applying (9) and (57), the limit values of
the object operation process transient probalslitie

py(t), b=12,...,v, at the operations stateg can

be found after completing a few steps described
in [4] and get

p, 00.214,
p, £ 0.293

p, 00.038

p, 00.455, (58)

Hence, applying (11), the object operation process
expected valuesE[g,], of the total sojourn times

éb, b=1234, measured in days, at the
particular operation statez, b=12...v, and
during the fixed operation time 8= \ear
=365 days are given by

E[6,] = 0.214x 365=78.1,

E[6,] = 0.038x 365=13.9,

E[6,] = 0.293x 365=106.9,

E[é4] =0.455x 365=166.1. (59)

8.1.2. Monte Carlo approach to an
exemplary object operation process analysis
The simulation is performed according to data given

in section 8.1.1. The first step is to select thigal
operation statez, (g ,)b= 1,234, at the moment

t =0, using formula (20), which is given by

z,, 0=<g<021
2.(q) = z,, 021<g<031
0971, 031<g< 060

z,, 060<g<1,
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where g is a randomly generated number from the
uniform distribution on the interva(0,1) . The next
operation state z, |= 1234, is generated

according to (21)- (23), frone, (g ,)b= 1234,
defined as

z,, 0<g<022
z,(9) =12, 022<g<054
z,, 054<g<]
z,, 0<g<02
z,(9)=4z;, 02=<9g<05
z,, 05=g<],
z, 0<g<012
z,(9)={2z,, 012<g<028
z,, 028<g<l
z,, 0<g<048
z,(9)=42,, 048<9g<07
z,, 07<g<l.

For instance, ifz,(g) =z, then the next operation
state would bez,, z, or z, generated frong,; (g .)

Applying (24), the realizations of the empirical
conditional sojourn times are generated according t
the formulae

6,,(H) =-192In[1- H], 6,5(H) = —480In[1- H],
6,,(H) =—-200In[1- H ], 8,,(H) = -96In[1- H],
6,5(H) =-81In[1-H], 8,,(H) =-55In[1- H],
6,,(H) = -870In[1- H], 6,,(H) = -480In[1- H],
6,,(H) =-300In[1- H], 8,,(H) = -325In[1- H],
6,,(H) =-510In[1- H], 8,5(H) = -438In[1- H],

where H is a randomly generated number from the
uniform distribution on the intervg0,1) .

The object operation process characteristics are

calculated using the Monte Carlo method with time
of the experiment fixed a8 =18 25@ays.

Applying (30) the limit values of the object
operation process transient probabilities at the

operation stateg, are as follows:

p,=0.233 p,=0.037,

p, =0278 p, =0.452. (60)

Based on the formula (29) and applying (60), the
object operation process unconditional mean
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sojourn timesg,, b=12,...,v, measured in days at
the particular operation states are given by

M, =28945, M, =6871,

M, =34962, M, =39148 (61)

Hence, applying (11) and according to (60), the
exemplary object operation process expected values

E[éb] of the total sojourn time#,, b= 1234, at
the particular operation stateg, b= 1234, and

during the fixed operation time = \ear
=365 days are given by

E[6,] = 0.233[365=85.0,
E[6,] = 0.037[865=135,
E[6,] = 0.278[B65=1015,

E[6,] = 0.452[B65=1650. (62)

8.2. An exemplary object reliability

8.2.1. Analytical approach to an exemplary
object reliability analysis

For the considered exemplary object, we assume
that the conditional reliability functions defindxy

(12) are different at various operation states and
have the exponential forms

R® (t) = exp[-0.00206667] at z,,
R® (t) = exp[-0.00144001] at z,,
R® (t) =exp[-0.00261064] at z,,

R™ (t) = exp[-0.00393881] at z,, (63)
for t 0¢0,+c0).

According to (14), considering (60) and (63), the
object unconditional reliability function is givday

R, (t) 00.233exp[-0.00206667]
+0.037exp[-0.001440001 ]
+ 0.278exp[-0.00261069 ]
+0.452exp[-0.00393881 ], (64)
for t 0¢0,+c0).

The mean values of the object conditional lifetimes
at the particular operation states measured in days
are calculated according to (63) and given by

M, =48387 days,
Uy =38304 days

U, =69444 days
U, =25388 days
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The object operation time is large enough to apply
the formula (17) and get

41 £ 0.233[48387 + 0.037(69444

+0.278[38304 + 0.452[253 88

=350 6748 Mays. (65)

8.2.2. Monte Carlo approach to an object
reliability analysis

The realizations of the object conditional lifetsne
t® b= 1,234, are generated from the exponential
distributionaccording to (31)- (33), (63) given by

t® =-48387In(1- f),

t® =-69444In(1- f),
t® =-38304In(1- f),
t®@ =-25388In(1- f),

where f is a randomly generated number from the
uniform distribution on the intervg0, 1) .

The histogram of the exemplary object lifetimes is
illustrated inFigure 3

0.45
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Figure 3. The graph of the histogram of the
exemplary object lifetime

After analyzing and comparing the histogram with
the graph of exponential distribution density
function, we formulate the null hypothesis:

H,: The lifetime of the exemplary object has the
exponential distribution with the density function

t<0

t=0, (66)

fo= {/1 exp-4t],

where 1 [0(0,+ ).
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Further, we estimate the unknown parametenf
the density function (66) of the hypothetical
exponential distribution and we obtain

/1=éD 1

J0.00292545
T 34183

where

_F

uMz

i
N |

is the empirical mean value of the object
unconditional lifetimeT, whereasN is the number
of the lifetime realizations ang, j=12...N are its

realizations.
Hence, we get the following form of the object
unconditional reliability function

t<O

t=0. ©7)

R= {exp[—o 00292544],

To verify the hypothesis, we find the realization o
the x* (chi-square)-Pearson’s, calculated according

to the formula given in [4], which amounts
u, 0510. Assuming the significance level
a=005 for F—-1-1=10-1-1=8 degrees of
freedom, from the tables of the/’-Pearson’s

distribution we find the valueu, =1551 .The

obtained value u, belongs to the acceptance
domain, i.e.

u, =510<u, =1551.

Therefore, at the significance level=0. 0&e do
not reject the hypothesisH, stating that the
exemplary object unconditional reliability function
is exponential of the form.

The mean value of the object unconditional lifetime
T obtained by using Monte Carlo method according
to (67) is given by

u, = [R.(t) dt=34183 days.
0

The standard deviation is given according to (X9) a
follows

o, =34183 days.
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8.3. An exemplary object reliability and
oper ation optimization

8.3.1 An exemplary object reliability
optimization

The object characteristics can be improved by
changing the parameters of its operations process.
According to (65), the objective function defineg b
(34) takes the form

u=p, [48387+ p, 69444+ p, [B8304
+ p, (253 88 (68)
where p,,b=1234 are the transient

probabilities we want to optimize. Arbitrarily
assumed, the bound constraints of the transient
probabilities p, respectively are:

0.201< p, <0351, 003< p, <0.105,
0.245< p, <0.395, 0.309< p, <0.459,
4
2P, =1
b=1
The object conditional lifetime mean valugg |,

b= 1234, arranged in non-increasing order are as
follows

My 2 fiy 2 H2 [y (69)
Further, according to (69), we substitute

X = P2y X3 = Pry X3 = Psy Xy = Pas (70)
and we maximize with respect 0 i~ 1234, the

linear form (68) that according to (40)- (42) takes
the form

L =X (69444 + X, (48387 + X, [38304
+x,[25388

with the following bound constraints

X, = 003< X, <0.105= X,

X, =0.201< X, < 0.351= X, ,
X, = 0.245< X, < 0.395= X,
X, = 0.309< X, < 0.459= X, ,

4
X =1
i=1

Therefore, according to (44), we calculate
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X =¥ X =0.785,

y=1-% =1-0.785 = 0.215, (71)
and according to (45) we determine

x° =0, x°=0, %% -x°% =0,

x*=003, x'=0105 x'-x'=0.075

%% =0231, %X?>=0456  X?-%2=0.225

x°=0476, x*=0.851 x®-x%°=0.375

x4 =0.785 x*=131 x4 —x* = 0.525.

From the above, as according to (71), the inequalit
(46) takes the form

-x' <0.215,
it follows that the largest valued {01,2,34%uch
that this inequality holds is = 1.
Therefore, we fix the optimal solution that

maximizes linear function (68) according to theerul
(48) and we get

%, = % = 0.105,
X, =9 -x"+xt+ %,
=0.215-0.105+ 003+ 0.201=0.341

Xy = X5 = 0.245,

X, =X, =0.3009. (72)
Finally, after making the inverse to (70)
substitution, we get the optimal transient
probabilities

p, =% =0.105 p, =%, =0.341,

p; = %3 =0.245, p, =%, =0.309, (73)

that maximize the exemplary system mean lifetime
U expressed by the linear form (68) giving,

according to (51) and (73), its optimal value

L = p, 48387+ p, (69444
+ p, [B83 04+ p, (25388
=0.341[48387+ 0.105[694 44
+0.245[383 04+ 0.309[25388
£410.21 days, (74)
which is greater than that before optimization give
by (65).

Substituting the optimal solution (73) into the
formula (16) the corresponding optimal
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unconditional reliability function of the object &f
the form

R(t) = 0.341[R® (t) + 0.105[R®@ (t)
+0.245[R® (t )+ 0.309(R™ (1),

for t =0, where R® (t), b= 12,3 4, are given by
(63). The graph of the exemplary object optimal
reliability function R(t )is presented iffigure 4.

13
0.8 *\\
0.6+ \
0.4r \
0.2} \\
N~
—— — — N
1 2 3 4 5 6

Figure 4. The graphs of the object reliability
functions R(t) and Ry(t ).

Further, according to (19),
optimal standard deviation
unconditional lifetimes is given by

the corresponding
of the object

0 [0.9392.

8.3.2. An exemplary object operation process
optimal characteristics

Having the values of the optimal transient
probabilities determined by (73), it is possible to
find the optimal unconditional mean values of the
sojourn times of the objedperation process at the
operation states. Substituting the optimal trartsien
probabilities at operation states

p, = 0341 p,=0.105,
p, =0.245  p, =0.309,

determined by (73) and considering the steady
probabilities determined by (57), we get the
following system of equations

-0.155%, + 005781, + 00798, + 0.123M, =0
0.0248V, - 0.15131, + 0.0246V , + 0.037M , =0
0.057™, +0.0413V1, - 0.1768V1, + 0.0883V1, =0
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0.072M, +0.052M, + 00723/, — 02495\, =0

with the unknown optimal mean valuds, .

Since the determinant of the main matrix of the
above system of equations is equal to O, then its
rank is less than 4 and there are non-zero sokition
of this system of equations that are ambiguous and
dependent on one or more parameters. Thus, we
may fix some of them and determine the remaining
ones. In our case, according to (61), we conclude

that it is sensible to assumeM,=40Q

Consequently, from [4], the obtained optimal mean
values of the object unconditional sojourn times at
the operation states, are as follows

M, C 675, M, C 290,
M, C 490, M, =400 (75)

It can be seen that these solutions differ muchfro
the valuesM,, M,, M,, and M, given by (61).
Having these solutions, it is also possible to lémk
the optimal valuesM,, of the mean value#,, of

the conditional sojourn times at operation states.
Namely, substituting the probabilities of the objec

operation process transitions between the operation
states, determined by (53) and the optimal mean

values M, given by (75), we get the following
system of equations

022M, + 032M,; + 046M,, = 675
020M ,, + 030M ,, + 050M ,, = 290
012M, + 016Mg, + 072M,, = 490
048M ,, + 022M ,, + 030M,, = 400

with the unknown optimal valueM, we want to

find.

As the solutions of the above system of equations
are ambiguous, then we arbitrarily fix some of them
because, for instance because of practically
important reasons, and we find the remaining ones.
In this case we proceed as follows:

- we fix M,, =20Q M,, =500
and we findM,, 01024

- we fix M,; =10Q M, =100
and we find M, [148Q

- we fix M4, =90Q M, =500
and we find M, 0419
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- we fix M,, =30Q M,, =500
and we find M ,, 0487, (76)

It can be seen that these solutions differ muchfro

replacing approximately the unconditional mean
sojourn timesM, of the object at the particular

operation states before the optimization given by
(61) by their optimal vaIuesI\)Ib after the

the mean values of the object conditional sojourn optimization given by (75). .
times at the particular operation states before its The easiest way of the object operation process

operation process optimization given by (55).

reorganizing is that leading to the replacing

Another very useful and much easier to be applied approximately the total sojourn timeE{éb] before

in practice tool that can help iplanning the

operation process of an object are the system
operation process optimal mean values of the total
sojourn times at the particular operation states

the optimization given by (59) by their optimal
values E[éb] after the optimization given by (77).

during the system operation time that by the 9-Conclusions

assumpion is equal t@ =1year = 365 days. Under

this assumption, after aplying (11), we get their

optimal values

E[8,] = p,6 = 0.341[B6501245,
E[6,] = p,6 =0.105[B65138.3,
E[6,] = p,6 = 0.245[3650189.4,
E[6,] = p,6 = 0.309[B650112.8, (77)

that differ much from the values d&[6, IE[6,],
E[6,], E[6,] determined by (59).

In practice, the knowledge of the optimal values of

M, M, and E[§, ] given respectively by (75)-
(77), can be very important and helpful for an obje

operation process planning and improving in order

The achieved results may be considered as an
illustration of the possibilities of the proposed

Monte Carlo simulation method application to the

system operation and reliability prediction and

optimization. The obtained evaluation may be useful
in complex systems reliability analysis and

improving, especially during the design and when

planning their operation processes effectiveness.
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