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1. Introduction 
 

The reliability function of an object subjected to 
varying in time its operation process analytical 
determination very often leads to complicated 
formulae and therefore it is sometimes difficult to 
implement modeling, prediction and optimization 
using this way [1]- [7]. The Monte Carlo simulation 
method is a tool that sometimes allows to simplify 
solving this problem [8]. The analytical approach to 
systems reliability analysis is shortly presented and 
next the background of the computer simulation 
modelling method for such objects reliability 
assessment are is given. The Monte Carlo method is 
practically applied to examine the reliability of an 
exemplary object at variable operation conditions. 
This way, the main reliability and operation process 
characteristics of this exemplary object are found. 
Further, the optimal values of those characteristics 
are determined. 
 
2. An object operation process 
 

We assume that an object during its operation at the  

fixed moment ,t  ,,0+∞∈t  may be at one of ,ν  

,N∈ν  different operations states ,bz  ν,...,2,1=b . 

Consequently, we mark by ),(tZ  ,,0+∞∈t  the 

object operation process, that is a function of a 
continuous variable ,t  taking discrete values at the 

set },...,,{ 21 vzzz  of the object operation states. We 
assume a semi-Markov model [2], [4] of the object 
operation process )(tZ  and we mark by blθ  its 
random conditional sojourn times at the operation 
states bz , when its next operation state is ,lz  

,,...,2,1, vlb =  .lb ≠  
Consequently, the operation process may be 
described by the following parameters:  
- the vector of the initial probabilities of the object 

operation process )(tZ  staying at the particular 

operations states at the moment 0=t  
 
   )],0(),...,0(),0([)]0([ 211 vvb pppp =×  (1) 
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   ),)0(()0( bb zZPp == ν,...,2,1=b ; (2) 
 
- the matrix of the probabilities of the object 

operation process )(tZ  transitions between the 

operation states bz  and lz , ,,...,2,1, ν=lb  lb ≠  
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where 0=bbp  for ;b ν,...,2,1=  
 
- the matrix of the conditional distribution 

functions of the object operation process )(tZ  

conditional sojourn times blθ  at the operation 
states 
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where  
 
   ),()( tθPtH blbl <=  0)( =tHbb , (5) 
 
for ,,...,2,1, ν=lb lb ≠ . 

Having identified the probabilities blp  defined by 
(3) of transitions between the operation states and 
the distributions of conditional sojourn times blθ , 

the mean values bM  of the object operation process 

)(tZ  unconditional sojourn times ,bθ  ,,...,2,1 ν=b  
at the particular operation states can be determined 
by 
 

   ∑==
=

ν
θ

1
][

l
blblbb MpEM , ,,...,2,1 ν=b  (6) 

 
where blM  are the mean values of the conditional 

sojourn times blθ  given by 
 

   ,)(][
0
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∞

dttthEM blblbl θ  (7) 

 
   ,,...,2,1, ν=lb  ,lb ≠  and  
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tdH
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)(
)( = ,  ,,...,2,1, ν=lb  ,lb ≠  (8) 

 
are the conditional density functions of the object 
operation process )(tZ  conditional sojourn times 

,blθ ,,...,2,1, ν=lb ,lb ≠  at the particular operation 
states corresponding to the distribution functions 

)(tHbl . 
Further, the limit values of the object operation 
process )(tZ  transient probabilities at the particular 
operation states  
 
   ))(()( bb ztZPtp == , ,,...,2,1 ν=b   
 
can be determined from the following relationship 
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where bM  are given by (6), while  the steady 

probabilities bπ  of the vector νπ xb 1][  satisfy the 
system of equations 
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where [ ] [ ]νππππ ,...,, 21=b  and the matrix [ ]blp  is 
defined by (3).  
 
Other practically interesting characteristics of the 
object operation process )(tZ  when the operation 
time θ  is sufficiently large, are its total sojourn 

times bθ̂  at the particular operation states ,bz  
,,...,2,1 vb =  during the fixed object opetation time 

that have approximately normal distribution with the 
expected value given by 
 

   ,]ˆ[ˆ θθ bbb pEM ==  ,,...,2,1 ν=b  (11) 

 
where bp  are given by (9). 
 
3. Reliability of an object subjected to 
varying operation conditions 
 

We assume that every operation state of the object 
operation process )(tZ , ),,0 +∞〈∈t  described in 
section 2, have an influence on the object 
reliability [4]. Therefore, the object reliability at the 
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particular operation state ,bz ,,...,2,1 ν=b  can be 
described using the conditional reliability function 
 
   ),)(|()( )()(

b
bb ztZtTPt =>=R  (12) 

 
for ),,0 ∞+∈t  ,,...,2,1 ν=b  that is the conditional 

probability that the object conditional lifetime )(bT  
is greater than t , while the object operation process 

)(tZ  is at the operation state ,bz  ν,...,2,1=b  [4]. 
 
The relationship between the distribution function 

)()( tbF  of the object conditional lifetime )(bT  and 

the object conditional reliability function )(bR  is 
given by 
 
   )(1))(|()( )()()( tztZtTPt b

b
bb RF −==<= , (13) 

 
for ),,0 ∞+∈t   ,,...,2,1 ν=b  

Further, we denote the object unconditional lifetime 
by T  and the unconditional reliability function of 
the object by 

 
   )()( tTPt >=R ,  ).,0 +∞〈∈t  (14) 
 
The relationship between the distribution function 

)(tF  of the object unconditional lifetime T  and the 

object unconditional reliability function )(tR  is 
given by 
 
   )(1)(1)()( ttTPtTPt RF −=>−=≤= , (15) 
 
for )∞+∈ ,0t . 

In the case when the object operation time θ  is 
large enough, the unconditional reliability function 
of the object is approximated by [4] 

   ∑≅
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v

1b

)b(
b ),t(p)t( RR   ),,0 +∞〈∈t  (16) 

 
where ,bp ,,...,2,1 ν=b  are the object operation 
process limit transient probabilities given by (9). 
Hence the mean value of the object unconditional 
lifetime T  is given by 
 

   ∑≅
=

ν
µµ

1b
bbp , (17) 

 
where bµ  are the mean values of the object 

conditional lifetimes )(bT  at the operation state 
,bz ν,...,2,1=b , given by 

 

   dt)(
0

)b(
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tb Rµ ,  ,,...,2,1 ν=b  (18) 

 

)()( tbR , ,,...,2,1 ν=b  are defined by (12) and bp  
are given by (9). 

 
Whereas, the standard deviation of the object 
unconditional lifetime T  is given by  

 

   ,)(2][ 2

0

µσ −∫==
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dtttTD R  (19) 

 
where )(tR  is given by (14) and µ  is given by (17). 
 
4. Monte Carlo simulation approach to an 
object operation process modelling 
 

We denote by )(qzb , ,,...,2,1 ν=b  the realization of 
the object operation process initial operation state at 
the moment 0=t  generated from the distribution 
defined by (1)- (2). This realization is generated 
according to the formula 
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where q  is a randomly generated number from the 

uniform distribution on the interval 1,0 . 

We denote by )(gzbl , ,,...,2,1 ν=l  ,lb ≠  the 
sequence of the realizations of the object operation 
process consecutive operation states generated from 
the distribution defined by (3). Those realizations 
are generated according to the formula 
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for ,...,,3,2 ν=b  
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where g  is a randomly generated number from the 

uniform distribution on the interval 1,0 . 

 

We denote by )(i
blθ , lblb ≠= ,,...,2,1, ν , 

,,...,2,1 blni =  the realizations of the conditional 

sojourn time blθ  of the object operation process 

generated from the distribution blH , defined by (4), 

where bln  is the number of those sojourn time 

realizations during the experiment time θ~ . Those 
realizations are generated according to the formulae 
 

   )(1 hH blbl
−=θ , lblb ≠= ,,...,2,1, ν , (24) 

 

where )(1 hH bl
−  is the inverse function of the 

distribution function )(tH bl  and h  is a randomly 
generated number from the uniform distribution on 
the interval 1,0 , which in the case of exponential 

distribution  
 
   ]exp[1)( ttH blbl α−−= , 0≥t , (25) 
 
takes the following form 
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1

h
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θ  lblb ≠= ,,...,2,1, ν . (26) 

 
The exemplary realizations of the considered object 
operation process including the realisations 
 

   )1(
blθ , )2(

blθ , …, )( bln
blθ , lblb ≠= ,,...,2,1, ν  (27) 

is presented in Figure 1. 
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Figure 1. The exemplary sojourn times of the object 
operation process 
 
Having those realisations, it is possible to determine 
approximately the total sojourn time at the operation 

state bz  during the time of the experiment θ~  
applying the formula 
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and the object operation process unconditional mean 
sojourn times are given by 

  

b
b

b n
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Further, the limit transient probabilities defined by 
(9) can be approximately obtained using the formula 
 

   
θ
θ
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~
b

bp = , ,,...,2,1 ν=b ∑=
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1
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b
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5. Monte Carlo simulation approach to an 
object reliability modelling 
 

The realizations of the object conditional lifetimes 
)(bt  are generated according to the distribution (13), 

i.e. they are generated by the sampling formula 
 

   ( ) ( ) 1)(1)()( )(1)(
−−

−== fft bbb RF , (31) 
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where ( ) 1)( )(
−

fbF  is the inverse function of the 

distribution function )()( tbF  of the object 

conditional lifetime )(bT  defined by (13) which in 
the case of exponential distribution takes the 
following form 
 

   ]exp[1)( )()( tt bb λ−−=F , 0≥t , ν,...,2,1=b , (32) 
 
In the case of the above exponential distribution the 
realisations of the object conditional lifetimes take 
the following form 
 

   ),1ln(
1

)(
)( ft

b
b −−=

λ
 ν,...,2,1=b . (33) 

 

where )(bλ , are the failure rates according to (32) 
and f  is a randomly generated number from the 

uniform distribution on the interval 1,0 . 

 
 
 
 
 

6. Procedures of Monte Carlo simulation 
application to operation and reliability of an 
object characteristics determination 
 

The procedure is illustrated in Figure 2. At the 
beginning, we fix the following parameters: 
- the number }0{\N∈N  of iterations (runs of the 

simulation) equal to the number of the lifetime 
realizations; 

- the vector of the initial probabilities )]0([ bp , 
ν,...,2,1=b , of the object operation process 

)(tZ  at the moment 0=t  defined by (2); 

- the matrix of the probabilities ][ blp , 
lblb ≠= ,,...,2,1, ν , of the object operation 

process )(tZ  transitions between the various 
object operation states defined by (3). 

- the matrix ][ blα , )∞∈ ,0blα , ,,...,2,1, ν=lb  

lb ≠ , of the intensities of the object operation 
process transitions between the operation states 
existing in (25); 

- the vector ][ )(bλ , ν,...,2,1=b , of the failure 

rates )∞∈ ,0)(bλ  existing in (32); 
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Figure 2. Monte Carlo algorithm for an object reliability evaluation 
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Next, we generate the realizations of the conditional 
sojourn times blθ , lblb ≠= ,,...,2,1, ν , of the 
object operation process defined by (24) according 
to the formula (26). Further, we generate the 

realisations )(bT , ν,...,2,1=b , of the object 
conditional lifetimes according to the formula (33). 
In the next step we introduce: 
- }0{\N∈j  as the subsequent iteration in the 

main loop and set 1=j ; 

- )∞∈ ,0jt , Nj ,...,2,1=  as the object 

unconditional lifetime realization and set 0=jt . 

As the algorithm progresses, we draw a random 
number q  from the uniform distribution on the 

interval 1,0 . Based on this random value, the 

realization  
 
   )(qzb , ν,...,2,1=b , 
 
 of the object operation process initial operation 
state at the moment 0=t  is generated according to 
the formula (20).  
Next, we draw a random number g uniformly 
distributed on the unit interval. Concerning this 
random value, the realization  
 
   )(gzl , ,,,...,2,1 bll ≠= ν  
 
of the object operation process consecutive 
operation state is generated according to the formula 
(21).  
Further, we generate a random number h  from the 
uniform distribution on the interval 1,0 , which we 

put into the formula (26) obtaining the realisation 

blθ , lblb ≠= ,,...,2,1, ν . Subsequently, we generate 

a random number f  uniformly distributed on the 
unit interval, which we put into the formula (33) 

obtaining the realisation )(bt , ν,...,2,1=b . If the 
realization of the empirical conditional sojourn time 
is not greater than the realization of the object 
conditional lifetime, we add to the object 
unconditional lifetime realization jt  the value blθ . 

The realization jt  is recorded and lz  is set as the 

initial operation state. 
We generate another random numbers fhg ,,  from 

the uniform distribution on the interval 1,0  

obtaining the realizations )(gzl , blθ  and )(bt , 
lblb ≠= ,,...,2,1, ν . Each time we compare the 

realization of the conditional sojourn time blθ  with 

the realization of the object conditional lifetime )(bt . 

If blθ  is greater than )(bt , we add to the sum of the 

realizations of the conditional sojourn times blθ  the 

realisation )(bt , ν,...,2,1=b , and we obtain and 
record an object unconditional lifetime realization 

jt . Thus, we can proceed replacing j with 1+j  and 

shift into the next iteration in the loop if .Nj <  In 
the other case, we stop the procedure. 
 
7. Optimization of an object operation 
process and reliability at variable operation 
conditions 
 

The object operation process has significant 
influence on its reliability [4]. According to (17), the 
mean value ,µ  of the object unconditional lifetimes 
is determined by the limit values of transient 
probabilities ,,...,2,1, vbpb =  of the object operation 
process at the operation states given by (30) and the 
mean values ,,...,2,1, vbb =µ  of the object 
conditional lifetimes given by (18). The 
corresponding optimal values ,,...,2,1, vbpb =&  of 
the transient probabilities may be found to 
maximize the mean value µ  of the unconditional 
object lifetimes. 
Therefore, the optimization problem can be 
formulated as a linear programming model with the 
objective function of the following form 
 

   ∑=
=

ν
µµ

1b
bbp , (34) 

 

where ∑ =
=

ν

1
,1

b
bp  ,0≥bµ  ν,...,2,1=b , with the 

following bound constraints for the unknown 
transient probabilities bp , ν,...,2,1=b , 
 
   ,bbb ppp

)( ≤≤  ,,...,2,1 vb =   (35) 
 
where  
 
   ,10 ≤≤ bp

(
 ,10 ≤≤ bp

)
 bb pp

)( ≤ , .,...,2,1 vb =  (36) 
 
The optimal value of the transient probabilities bp , 

,,...,2,1 ν=b  can be found after completing a few 
steps. 
 
First, we arrange the object conditional lifetime 
mean  values   ,bµ   ,,...,2,1 ν=b   in  non-increasing 
order 
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   ,...
21 ν

µµµ bbb ≥≥≥  (37) 
 
where  
 
   },...,2,1{ ν∈ib , for  .,...,2,1 ν=i  (38) 
 
Next, we substitute  
 
   

ibi px = , 
ibi px

(( = , 
ibi px

)) = , (39) 
 
for  ν,...,2,1=i , and we maximize with respect to 

,ix  ,,...,2,1 ν=i  the linear form (34) that after this 
transformation takes the form  
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1i
ibix , (40) 

 
with the following bound constraints 
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i
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where ,

ibµ  ,0≥
ibµ  ,,...,2,1 ν=i  are fixed mean 

values of the object conditional lifetimes arranged in 
non-increasing order and  
 
   ,ix

(
 10 ≤≤ ix

(
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   ,ix
)

 ,10 ≤≤ ix
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   ,ii xx
)( ≤  ,,...,2,1 ν=i  (43) 

 
are lower and upper bounds of the unknown 
probabilities ix , ,,...,2,1 ν=i  respectively.  

To find the optimal values of ,ix  ,,...,2,1 ν=i  we 
define  
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i
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i
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for .,...,2,1 ν=I  
 
Next, we find the largest value },...,1,0{ ν∈I  such 
that  
 
   yxx II ˆ<− ()

, (46) 
 

and we fix the optimal solution that maximize (39) 
in the following way: 
- if ,0=I  the optimal solution is 
 
   11 ˆ xyx

(
& +=  and ii xx

(
& =  for ;,...,3,2 ν=i  (47) 

 
- if ,0 ν<< I  the optimal solution is 
 
   ii xx

)
& =  for ,,...,2,1 Ii = 11 ˆ ++ ++−= I

II
I xxxyx

(()
& , 

   ii xx
(

& =  for  ;,...,3,2 ν++= IIi  (48) 
 
- if ,ν=I  the optimal solution is 
 
   ii xx

)
& =  for .,...,2,1 ν=i  (49) 

 
Finally, after making the inverse to (39) 
substitution, we get the optimal limit transient 
probabilities  
 
   ib xp

i
&& =  for ,,...,2,1 ν=i  (50) 

 
that maximize the object mean lifetime defined by 
the linear form (34), giving its maximum value in 
the following form 
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=

ν
µµ

1b
bbp&& . (51) 

 
8. An exemplary object operation and 
reliability evaluation and optimization 
 
8.1. An object operation process 
 
8.1.1. Analytical approach to an exemplary 
object operation process analysis 
 

We consider an exemplary object operating at v= 4 
operation states ,1z ,2z 3z  and 4z . The probabilities 
of the initial operation states of this object operation 
process are fixed arbitrarily in the following way  
 

   

].40.0,29.0,10.0,21.0[)]0([ =bp  (52) 
 
The probabilities of the exemplary object operation 
process )(tZ  transitions between the operation 

states bz  and lz , ,4,3,2,1, =lb  lb ≠  are also fixed 
arbitrarily [4] and given in the matrix below  
 

   

.

030.022.048.0
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50.030.0020.0
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Moreover, we assume that the distribution functions 
of the exemplary object operation process 
conditional sojourn times measured in days are as 
follows: 
 
   ],0052.0exp[1)(12 ttH −−=  

   ],0011.0exp[1)(31 ttH −−=  

   ],0021.0exp[1)(13 ttH −−=  

   ],0021.0exp[1)(32 ttH −−=  

   ],005.0exp[1)(14 ttH −−=  

   ],0033.0exp[1)(34 ttH −−=  

   ],0104.0exp[1)(21 ttH −−=  

   ],0031.0exp[1)(41 ttH −−=  

   ],0123.0exp[1)(23 ttH −−=  

   ],0020.0exp[1)(42 ttH −−=  

   ],0182.0exp[1)(24 ttH −−=  

   ],0023.0exp[1)(43 ttH −−=  (54) 
 
for ),0 +∞〈∈t . 
Applying (54) and (8) to the conditional 
distributions given by (7), the conditional mean 
values ][ blbl EM θ= , ,4,3,2,1, =lb  of the 
exemplary object sojourn times at the particular 
operation states measured in days are fixed as 
follows: 
 

   ,19212 =M  ,48013 =M  ,20014 =M  

   ,9621 =M  ,8123 =M  ,5524 =M  

   ,87031 =M  ,48032 =M  ,30034 =M  

   ,32541 =M  ,51042 =M  .43843 =M  (55) 
 
Based on the formula (6) and applying (53)- (55), 
the object operation process unconditional mean 
sojourn times bθ , vb ,...,2,1= , measured in days at 
the particular operation states are given by 
 
   84.287][ 11 == θEM ,  00.71][ 22 == θEM ,  

   20.397][ 33 == θEM ,  .60.399][ 44 == θEM  (56) 
 
Further, according to (10), the system of equations 
 

   

[ ]
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

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=
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4443214321

ππππ
ππππππππ xblp

 

 
after considering (53), takes the form  
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The approximate solutions of the above system of 
equations are:   
 
   ,236.01 ≅π    ,169.02 ≅π  

   ,234.03 ≅π    .361.04 ≅π  (57) 
 
Further, applying (9) and (57), the limit values of 
the object operation process transient probabilities 

)(tpb , ,,...,2,1 vb =  at the operations states bz  can 

be found after completing a few steps described 
in [4] and get 
 
   ,214.01 ≅p    ,038.02 ≅p  

   ,293.03 ≅p    .455.04 ≅p  (58) 
 
Hence, applying (11), the object operation process 

expected values ],ˆ[ bE θ of the total sojourn times 

,ˆ
bθ  ,4,3,2,1=b  measured in days, at the 

particular operation states ,bz  ,,...,2,1 vb =  and 
during the fixed operation time 1=θ  year 

365=  days are given by 
 

   ,1.78365214.0]ˆ[ 1 =×=θE  

   ,9.13365038.0]ˆ[ 2 =×=θE  

   ,9.106365293.0]ˆ[ 3 =×=θE  

   .1.166365455.0]ˆ[ 4 =×=θE  (59) 

 
8.1.2. Monte Carlo approach to an 
exemplary object operation process analysis 
 

The simulation is performed according to data given 
in section 8.1.1. The first step is to select the initial 
operation state )(gzb , ,4,3,2,1=b  at the moment 

,0=t  using formula (20), which is given by 
 

   













≤≤
<≤
<≤

<≤

=

,160.0,

60.031.0,
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)(

4

3

2

1

gz

gz

gz

gz

gzb  
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where g  is a randomly generated number from the 

uniform distribution on the interval 1,0 . The next 

operation state lz , ,4,3,2,1=l  is generated 

according to (21)- (23), from )(gzbl , ,4,3,2,1=b  
defined as 
 

   








≤≤
<≤

<≤
=

,154.0,
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)(
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1
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gz

gz l  
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For instance, if 1)( zgzb = , then the next operation 

state would be 2z , 3z  or 4z  generated from )(1 gz l . 
Applying (24), the realizations of the empirical 
conditional sojourn times are generated according to 
the formulae  
 
   ],1ln[192)(12 HH −−=θ ],1ln[480)(13 HH −−=θ  

   ],1ln[200)(14 HH −−=θ ],1ln[96)(21 HH −−=θ  

   ],1ln[81)(23 HH −−=θ ],1ln[55)(24 HH −−=θ  

   ],1ln[870)(31 HH −−=θ ],1ln[480)(32 HH −−=θ  

   ],1ln[300)(34 HH −−=θ ],1ln[325)(41 HH −−=θ  

   ],1ln[510)(42 HH −−=θ ],1ln[438)(43 HH −−=θ  
 
where H  is a randomly generated number from the 
uniform distribution on the interval 1,0 . 

The object operation process characteristics are 
calculated using the Monte Carlo method with time 

of the experiment fixed as 25018
~ =θ  days.  

Applying (30) the limit values of the object 
operation process transient probabilities at the 
operation states bz  are as follows: 

 
   ,233.01 =p    ,037.02 =p  

   ,278.03 =p    452.04 =p . (60) 
 
Based on the formula (29) and applying (60), the 
object operation process unconditional mean 

sojourn times bθ , vb ,...,2,1= , measured in days at 
the particular operation states are given by 
 
   45.2891 =M ,   71.682 =M , 

   62.3493 =M ,   .48.3914 =M  (61) 
 
Hence, applying (11) and according to (60), the 
exemplary object operation process expected values 

]ˆ[ bE θ  of the total sojourn times bθ̂ , ,4,3,2,1=b  at 

the particular operation states bz , ,4,3,2,1=b  and 
during the fixed operation time 1=θ  year  

365=  days are given by 
 

   ,0.85365233.0]ˆ[ 1 =⋅=θE  

   ,5.13365037.0]ˆ[ 2 =⋅=θE  

   ,5.101365278.0]ˆ[ 3 =⋅=θE  

   .0.165365452.0]ˆ[ 4 =⋅=θE  (62) 

 
8.2. An exemplary object reliability 
 
8.2.1. Analytical approach to an exemplary 
object reliability analysis 
 

For the considered exemplary object, we assume 
that the conditional reliability functions defined by 
(12) are different at various operation states and 
have the exponential forms 
 

   ]00206667.0exp[)()1( tt −=R  at 1z ,  

   ]00144001.0exp[)()2( tt −=R  at 2z , 

   ]00261069.0exp[)()3( tt −=R  at 3z , 

   ]00393887.0exp[)()4( tt −=R  at ,4z  (63) 

 
for ),0 +∞〈∈t . 
According to (14), considering (60) and (63), the 
object unconditional reliability function is given by 
 
   ]00206667.0exp[233.0)( tt −≅aR  
                ]001440001.0exp[037.0 t−+  
                ]00261069.0exp[278.0 t−+  
                ],00393887.0exp[452.0 t−+  (64) 
 
for ),0 +∞〈∈t . 
The mean values of the object conditional lifetimes 
at the particular operation states measured in days 
are calculated according to (63) and given by 
 
   87.4831 =µ  days, 44.6942 =µ  days 

   04.3833 =µ  days 88.2534 =µ  days 
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The object operation time is large enough to apply 
the formula (17) and get 
 
   44.694037.087.483233.0 ⋅+⋅≅µ  
          88.253452.004.383278.0 ⋅+⋅+  
       67487.359= days. (65) 
 
8.2.2. Monte Carlo approach to an object 
reliability analysis 
 

The realizations of the object conditional lifetimes 
)(bt , ,4,3,2,1=b are generated from the exponential 

distribution according to (31)- (33), (63) given by 
 

   ),1ln(87.483)1( ft −−=  

   ),1ln(44.694)2( ft −−=   

   ),1ln(04.383)3( ft −−=   

   ),1ln(88.253)4( ft −−=  
 
where f  is a randomly generated number from the 

uniform distribution on the interval 1,0 . 

 
The histogram of the exemplary object lifetimes is 
illustrated in Figure 3.  
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Figure 3. The graph of the histogram of the 
exemplary object lifetime 
 
After analyzing and comparing the histogram with 
the graph of exponential distribution density 
function, we formulate the null hypothesis: 

0H : The lifetime of the exemplary object has the 

exponential distribution with the density function 
 

   




≥−
<

=
,0],exp[

0,0
)(

tλtλ

t
tf  (66) 

 
where ),0 +∞〈∈λ . 
 

Further, we estimate the unknown parameter λ  of 
the density function (66) of the hypothetical 
exponential distribution and we obtain  
 

   ,00292545.0
83.341

11 ≅≅=
T

λ  

 
where  
 

   ∑=
=

N

j
jt

N
T

1

1
, 

 
is the empirical mean value of the object 
unconditional lifetime T, whereas N  is the number 
of the lifetime realizations and jt , Nj ,...,2,1= are its 

realizations. 
Hence, we get the following form of the object 
unconditional reliability function 
 

   




≥−
<

=
.0],00292545.0exp[

0,0
)(

tt

t
tsR  (67) 

 
To verify the hypothesis, we find the realization of 
the 2χ  (chi-square)-Pearson’s, calculated according 
to the formula given in [4], which amounts 

10.5≅nu . Assuming the significance level 

050.α =  for 811101 =−−=−− lr  degrees of 
freedom, from the tables of the 2χ -Pearson’s 

distribution we find the value .51.15=αu  The 

obtained value nu  belongs to the acceptance 
domain, i.e.  
 
   .51.1510.5 =≤= αn uu  
 
Therefore, at the significance level 050.α = , we do 
not reject the hypothesis 0H  stating that the 
exemplary object unconditional reliability function 
is exponential of the form. 
The mean value of the object unconditional lifetime 
T  obtained by using Monte Carlo method according 
to (67) is given by  
 

   83.341dt )t(µ
0

s =∫=
+∞

sR  days. 

 
The standard deviation is given according to (19) as 
follows 
 
   83.341=sσ  days. 
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8.3. An exemplary object reliability and 
operation optimization 
 
8.3.1 An exemplary object reliability 
optimization 
 

The object characteristics can be improved by 
changing the parameters of its operations process. 
According to (65), the objective function defined by 
(34) takes the form 
 
   04.38344.69487.483 321 ⋅+⋅+⋅= pppµ  

          88.2534 ⋅+ p  (68) 
 
where ,bp ,4,3,2,1=b  are the transient 
probabilities we want to optimize. Arbitrarily 
assumed, the bound constraints of the transient 
probabilities bp  respectively are: 
 
   ,351.0201.0 1 ≤≤ p     ,105.003.0 2 ≤≤ p  

   ,395.0245.0 3 ≤≤ p    ,459.0309.0 4 ≤≤ p   

   ∑ =
=

4

1
.1

b
bp  

 
The object conditional lifetime mean values ,bµ  

,4,3,2,1=b  arranged in non-increasing order are as 
follows  
 
   ≥2µ ≥1µ ≥3µ .4µ  (69) 
 
Further, according to (69), we substitute  
 
   ,21 px =  ,12 px =  ,33 px =  ,44 px =  (70) 
 
and we maximize with respect to ,ix  ,4,3,2,1=i  the 
linear form (68) that according to (40)- (42) takes 
the form  
 
   µ 44.6941 ⋅= x 87.4832 ⋅+ x 04.3833 ⋅+ x  

           ,88.2534⋅+ x  
 
with the following bound constraints 
 
   ,105.003.0 111 xxx

)( =≤≤=  

   ,351.0201.0 222 xxx
)( =≤≤=  

   ,395.0245.0 333 xxx
)( =≤≤=  

   ,459.0309.0 444 xxx
)( =≤≤=   

   ∑ =
=

4

1
.1

i
ix  

 
Therefore, according to (44), we calculate 
 

   ∑ ==
=

4

1
,785.0

i
ixx
((   

   xy
(−=1ˆ  = 1 – 0.785 = 0.215, (71) 

 
and according to (45) we determine 
 

   ,00 =x
(

 00 =x
) , ,000 =− xx

()
 

   ,03.01 =x
(

 ,105.01 =x
)

 ,075.011 =− xx
()

 

   ,231.02 =x
(

 ,456.02 =x
)

 ,225.022 =− xx
()

 

   ,476.03 =x
(  ,851.03 =x

)
 ,375.033 =− xx

()
 

   ,785.04 =x
(  ,31.14 =x

)  .525.044 =− xx
()  

 
From the above, as according to (71), the inequality 
(46) takes the form  
 

   ,215.0<− II xx
()

 
 
it follows that the largest value }4,3,2,1,0{∈I  such 
that this inequality holds is .1=I  
Therefore, we fix the optimal solution that 
maximizes linear function (68) according to the rule 
(48) and we get  
 
   105.011 == xx

)
& , 

   2
11

2 ˆ xxxyx
(()

& ++−=  
        ,341.0201.003.0105.0215.0 =++−=  
   ,245.033 == xx

(
&  

   .309.044 == xx
(

&  (72) 
 
Finally, after making the inverse to (70) 
substitution, we get the optimal transient 
probabilities  
 
   ,105.012 == xp &&    ,341.021 == xp &&  

   ,245.033 == xp &&    ,309.044 == xp &&  (73) 
 
that maximize the exemplary system mean lifetime 
µ  expressed by the linear form (68) giving, 
according to (51) and (73), its optimal value 
 
   µ& +⋅= 87.4831p& 44.6942 ⋅p&  

        + 04.3833 ⋅p& 88.2534 ⋅+ p&  
       +⋅= 87.483341.0 44.694105.0 ⋅  
       + 04.383245.0 ⋅ 88.253309.0 ⋅+  
       ≅ 410.21 days,  (74) 
 
which is greater than that before optimization given 
by (65). 
 
Substituting the optimal solution (73) into the 
formula (16) the corresponding optimal 
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unconditional reliability function of the object is of 
the form 
 

   )(tR& )(105.0)(341.0 )2()1( tt RR ⋅+⋅=  

            )(245.0 )3( tR⋅+ )(309.0 )4( tR⋅+ , 
 
for ,0≥t  where ),()( tbR  ,4,3,2,1=b  are given by 
(63). The graph of the exemplary object optimal 
reliability function )(tR& is presented in Figure 4. 
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Figure 4. The graphs of the object reliability 
functions )(tR& and ).(tsR  
 
Further, according to (19), the corresponding 
optimal standard deviation of the object 
unconditional lifetimes is given by 
 
   ≅σ& 0.9392. 
 
8.3.2. An exemplary object operation process 
optimal characteristics 
 

Having the values of the optimal transient 
probabilities determined by (73), it is possible to 
find the optimal unconditional mean values of the 
sojourn times of the object operation process at the 
operation states. Substituting the optimal transient 
probabilities at operation states  
 
   ,341.01 =p&    ,105.02 =p&  

   ,245.03 =p&    ,309.04 =p&  
 
determined by (73) and considering the steady 
probabilities determined by (57), we get the 
following system of equations 
 
   01231.00798.00576.01555.0 4321 =+++− MMMM &&&&  

   00379.00246.01513.00248.0 4321 =++− MMMM &&&&  

   00883.01768.00413.00577.0 4321 =+−+ MMMM &&&&  

   02495.00723.00522.00729.0 4321 =−++ MMMM &&&&  
 
with the unknown optimal mean values bM& .  
Since the determinant of the main matrix of the 
above system of equations is equal to 0, then its 
rank is less than 4 and there are non-zero solutions 
of this system of equations that are ambiguous and 
dependent on one or more parameters. Thus, we 
may fix some of them and determine the remaining 
ones. In our case, according to (61), we conclude 
that it is sensible to assume .4004 =M&  
Consequently, from [4], the obtained optimal mean 
values of the object unconditional sojourn times at 
the operation states, are as follows 
 
   1M& ≅  675,   2M&  ≅  290, 

  3M&  ≅  490,   .4004 =M&  (75) 
 
It can be seen that these solutions differ much from 
the values 1M , ,2M  ,3M  and 4M  given by (61). 
Having these solutions, it is also possible to look for 
the optimal values blM&  of the mean values blM  of 
the conditional sojourn times at operation states. 
Namely, substituting the probabilities of the object 
operation process transitions between the operation 
states, determined by (53) and the optimal mean 
values bM&  given by (75), we get the following 
system of equations   
 
   1222.0 M& 1332.0 M&+ 1446.0 M&+ 675=   

   2120.0 M& 2330.0 M&+ 2450.0 M&+ 290=  

   3112.0 M& 3216.0 M&+ 3472.0 M&+ 490=  

   4148.0 M& 4222.0 M&+ 1430.0 M&+ 400=  
 
with the unknown optimal values blM&  we want to 
find.  
As the solutions of the above system of equations 
are ambiguous, then we arbitrarily fix some of them 
because, for instance because of practically 
important reasons, and we find the remaining ones. 
In this case we proceed as follows:  
 
- we fix ,20012 =M&  50013 =M&  

  and we find ;102414 ≅M&  

- we fix ,10021 =M&  10023 =M&  

  and we find  ;48024 ≅M&  

- we fix ,90031 =M&  50032 =M&   

  and we find  ;41934 ≅M&  
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- we fix ,30041 =M& 50042 =M&   

  and we find  .48743 ≅M&  (76) 
 
It can be seen that these solutions differ much from 
the mean values of the object conditional sojourn 
times at the particular operation states before its 
operation process optimization given by (55). 
Another very useful and much easier to be applied 
in practice tool that can help in planning the 
operation process of an object are the system 
operation process optimal mean values of the total 
sojourn times at the particular operation states 
during the system operation time that by the 
assumpion is equal to 1=θ year = 365 days. Under 
this assumption, after aplying (11), we get their 
optimal values 
 

,5.124365341.0]ˆ[ 11 ≅⋅== θθ pE &&  

,3.38365105.0]ˆ[ 22 ≅⋅== θθ pE &&  

,4.89365245.0]ˆ[ 33 ≅⋅== θθ pE &&  

,8.112365309.0]ˆ[ 44 ≅⋅== θθ pE &&  (77) 

 

that differ much from the values of ],ˆ[ 1θE  ],ˆ[ 2θE  

],ˆ[ 3θE  ]ˆ[ 4θE  determined by (59). 
In practice, the knowledge of the optimal values of 

bM&  blM&  and ]ˆ[ bE θ&  given respectively by (75)- 
(77), can be very important and helpful for an object 
operation process planning and improving in order 
to make the object operation more reliable and safer. 
 
8.3.3. Comments on the object operation and 
reliability new strategy 
 

The comparison of the selected object 
characteristics before the object operation process 
optimization given by (55), (61) and (59) with their 
values after the object operation process 
optimization respectively given by (75)- (77) 
justifies the sensibility of the performed object 
operation process optimization. 
From the above it can be suggested to organize the 
object operation process in the way that causes the 
replacing approximately the conditional mean 
sojourn times blM  of the object at the particular 
operation states before the optimization given by 
(55) by their optimal values blM&  after the 
optimization given by (76). However, the fulfilling 
this suggestion of the operation process parameters 
changing is not easy in practice.  
It seems to be practically a bit easier way to change 
the object operation process characteristics by the 
reorganizing the operation process that results in 

replacing approximately the unconditional mean 
sojourn times bM  of the object at the particular 
operation states before the optimization given by 
(61) by their optimal values bM&  after the 
optimization given by (75).  
The easiest way of the object operation process 
reorganizing is that leading to the replacing 
approximately the total sojourn times ]ˆ[ bE θ  before 
the optimization given by (59) by their optimal 
values ]ˆ[ bE θ&  after the optimization given by (77). 
 
9. Conclusions 
 

The achieved results may be considered as an 
illustration of the possibilities of the proposed 
Monte Carlo simulation method application to the 
system operation and reliability prediction and 
optimization. The obtained evaluation may be useful 
in complex systems reliability analysis and 
improving, especially during the design and when 
planning their operation processes effectiveness. 
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