Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Shape memory polymers (SMP) are new multifunctional materials raising increasing interest in various functional applications. Among them, polyurethane shape memory polymers (PU-SMP) are particularly attractive due to their combination of shape memory, high strength and biocompatible properties. Developing new applications for PU-SMP requires comprehensive research on their characteristics. This work involved investigating the structure and mechanical behavior as well as characterizing the energy storage and dissipation of a thermoplastic PU-SMP with a glass transition temperature (Tg) of 25_C during tensile loading-unloading. The process of energy storage and dissipation in the PU-SMP was investigated based on the stress-strain curves recorded by a quasi-static testing machine and the temperature changes, accompanying the deformation process, obtained by using a fast and sensitive infrared camera. The results showed that the thermomechanical behavior of the examined PU-SMP depends significantly on the strain rate. At a higher strain rate, there are higher stress and related temperature changes, which lead to greater energy dissipation. However, the energy storage values estimated during the deformation process turned out to be not significant, indicating that the work supplied to the PU-SMP structure during loading is mainly converted into heat. It should also be noted that the structural investigation revealed no crystalline phase in the investigated PU-SMP.
Rocznik
Tom
Strony
art. no. e147343
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Multidisciplinary Research Center, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
- [1] S. Hayashi, “Properties and applications of polyurethane-series shape memory polymer,” Int. Prog. Urethanes, vol. 6, pp. 90–115, 1993.
- [2] S. Hayashi, S. Kondo, P. Kapadia, and E. Ushioda, “Room-temperature-functional shape-memory polymers,” Plast. Eng., vol. 51, pp. 29–31, 1995.
- [3] A. Lendlein and S. Kelch, “Shape-Memory Polymers,” Angew. Chem. Int. Ed., vol. 41, no. 12, pp. 2034–2057, 2002, doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M.
- [4] W.M. Huang, B. Yang, Y. Zhao, and Z. Ding, “Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review,” J. Mater. Chem., vol. 20, no. 17, pp. 3367–3381, 2010, doi: 10.1039/b922943d.
- [5] P. Mora, C. Jubsilp, C.H. Ahn, and S. Rimdusit, “Two-way thermo-responsive thermoset shape memory polymer based on benzoxazine/urethane alloys using as self-folding structures,” Adv. Ind. Eng. Polym. Res., vol. 6, no. 1, pp. 13–23, 2023, doi: 10.1016/j.aiepr.2022.09.001.
- [6] A. Pandey, G. Singh, S. Singh, K. Jha, and C. Prakash, “3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings,” J. Mech. Behav. Biomed. Mater., vol. 108, p. 103781, 2020, doi: 10.1016/j.jmbbm.2020.103781.
- [7] M. Nabavian Kalat et al., “Investigating a shape memory epoxy resin and its application to engineering shape-morphing devices empowered through kinematic chains and compliant joints,” Mater. Des., vol.233, p.112263, 2023, doi: 10.1016/j.matdes.2023.112263.
- [8] A. Lendlein, H. Jiang, O. Jünger, and R. Langer, “Light-induced shape-memory polymers,” Nature, vol. 434, no. 7035, pp. 879–882, 2005, doi: 10.1038/nature03496.
- [9] W. Prasomsin, T. Parnklang, C. Sapcharoenkun, S. Tiptipakorn, and S. Rimdusit, “Multiwalled carbon nanotube reinforced bio-based benzoxazine/epoxy composites with NIR-laser stimulated shape memory effects,” Nanomaterials, vol. 9, no. 6, p. 881, 2019, doi: 10.3390/nano9060881.
- [10] B. Yang, W.M. Huang, C. Li, C.M. Lee, and L. Li, “On the effects of moisture in a polyurethane shape memory polymer,” Smart Mater. Struct., vol. 13, no. 1, pp. 191–195, 2004, doi: 10.1088/0964-1726/13/1/022.
- [11] Q. Ze et al., “Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation,” Adv. Mater., vol. 32, no. 4, p. 1906657, 2020, doi: 10.1002/adma.201906657.
- [12] H. Tobushi, R. Matsui, K. Takeda, and E.A. Pieczyska. Mechanical Properties of Shape Memory Materials. New York: Nova Science Publishers, 2013.
- [13] W.M. Huang, B. Yang, and Y.Q. Fu. Polyurethane Shape Memory Polymers, Bosa Raton: CRC Press, Taylor & Francis, 2012.
- [14] C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mater. Chem., vol. 17, no. 16, pp. 1543–1558, 2007, doi: 10.1039/b615954k.
- [15] K. Strzelec, N. Sienkiewicz, and T. Szmechtyk, “Classification of Shape-Memory Polymers, Polymer Blends, and Composites,” in Shape Memory Polymers, Blends and Composites: Advances and Applications. J. Parameswaranpillai, S. Siengchin, J.J. George, and S. Jose, Eds. Singapore: Springer Singapore, 2020, pp. 21–52, doi: 10.1007/978-981-13-8574-2.
- [16] H. Tobushi, T. Hashimoto, N. Ito, S. Hayashi, and E. Yamada, “Shape Fixity and Shape Recovery in a Film of Shape Memory Polymer of Polyurethane Series,” J. Intell. Mater. Syst. Struct., vol. 9, no 2, pp. 127–136, 1998, doi: 10.1177/1045389X9800900206.
- [17] M. Staszczak et al., “Characterization of Polyurethane Shape Memory Polymer and Determination of Shape Fixity and Shape Recovery in Subsequent Thermomechanical Cycles,” Polymers, vol. 14, no. 21, p. 4775, 2022, doi: 10.3390/polym14214775.
- [18] M. Bil, M. Jurczyk-Kowalska, K. Kopeć, and M. Heljak, “Study of Correlation between Structure and Shape-Memory Effect/Drug-Release Profile of Polyurethane/Hydroxyapatite Composites for Antibacterial Implants,” Polymers, vol. 15, no. 4, p. 938, 2023, doi: 10.3390/polym15040938.
- [19] S. Jape et al., “Self-foldable origami reflector antenna enabled by shape memory polymer actuation,” Smart Mater. Struct., vol. 29, no. 11, p. 115011, 2020, doi: 10.1088/1361-665X/abaac2.
- [20] S. K. Melly, L. Liu, Y. Liu, and J. Leng, “Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects,” J. Mater. Sci., vol. 55, no. 25, pp. 10975–11051, 2020, doi: 10.1007/s10853-020-04761-w.
- [21] G. Scalet, “Two-way and multiple-way shape memory polymers for soft robotics: An overview,” Actuators, vol. 9, no. 1, 2020, doi: 10.3390/act9010010.
- [22] N. Ahmed, B. Niaz, S. Ahmed, M.T. Javid, M. Ali, and M. Tariq, “Mechanically robust and highly elastic thermally induced shape memory polyurethane based composites for smart and sustainable robotic applications,” Polym. Adv. Technol., vol. 34, no. 4, pp. 1075–1419, 2023, doi: 10.1002/pat.5961.
- [23] J. Hu, H. Meng, G. Li, and S. I. Ibekwe, “A review of stimuli-responsive polymers for smart textile applications,” Smart Mater. Struct., vol. 21, no. 5, 2012, doi: 10.1088/0964-1726/21/5/053001.
- [24] Y. Shi, H. Chen, and X. Guan, “High shape memory properties and high strength of shape memory polyurethane nanofiber-based yarn and coil,” Polym. Test., vol. 101, p. 107277, 2021, doi: 10.1016/j.polymertesting.2021.107277.
- [25] H. Garg, J. Mohanty, P. Gupta, A. Das, B.P. Tripathi, and B. Kumar, “Effect of heat-set temperature on the crease recovery behavior of cotton fabric dip-coated with shape memory polyurethane,” Mater. Chem. Phys., vol. 294, p. 126952, 2023, doi: 10.1016/j.matchemphys.2022.126952.
- [26] H. Jia, S.Y. Gu, and K. Chang, “3D printed self-expandable vascular stents from biodegradable shape memory polymer,” Adv. Polym. Technol., vol. 37, no. 8, pp. 3222–3228, 2018, doi: 10.1002/adv.22091.
- [27] M. Ramezani and M.B.B. Monroe, “Biostable Segmented Thermoplastic Polyurethane Shape Memory Polymers for Smart Biomedical Applications,” ACS Appl. Polym. Mater., vol. 4, no. 3, pp. 1956–1965, 2022, doi: 10.1021/acsapm.1c01808.
- [28] Y.C. Jung and J.W. Cho, “Application of shape memory polyurethane in orthodontic,” J. Mater. Sci. Mater. Med., vol. 21, no. 10, pp. 2881–2886, 2010, doi: 10.1007/s10856-008-3538-7.
- [29] A. Bruni, F. G. Serra, A. Deregibus, and T. Castroflorio, “Shape-memory polymers in dentistry: Systematic review and patent landscape report,” Materials, vol. 12, no. 14, p. 2216, 2019. doi: 10.3390/ma12142216.
- [30] G.I. Taylor and M.A. Quinney, “The latent energy remaining in a metal after cold working,” Proc. R. Soc. Lond. A, vol. 143, no. 849, pp. 307–326, 1934, doi: 10.1098/rspa.1934.0004.
- [31] M.B. Bever, D.L. Holt and A.L. Titchener, “The Stored Energy of Cold Work,” Prog. Mater. Sci., vol. 17, pp. 5–177, 1973, doi: 10.1016/0079-6425(73)90001-7.
- [32] W.S. Farren and G.I. Taylor, “The heat developed during plastic extension of metals,” Proc. R. Soc. Lond. A, vol. 107, no. 743, pp. 422–451, 1925, doi: 10.1098/rspa.1925.0034.
- [33] A. Chrysochoos and G. Martin, “Tensile Test Microcalorimetry for Thermomechanical Behaviour Law Analysis,” Mater. Sci. Eng. A, vol. 108, pp. 25–32, 1989, doi: 10.1016/0921-5093(89)90402-4.
- [34] A. Chrysochoos, O. Maissonneuve, G. Martin, H. Caumon, and J.C. Chezeaux, “Plastic and dissipated work and stored energy,” Nucl. Eng. Des., vol. 114, no. 3, pp. 323–333, 1989, doi: 10.1016/0029-5493(89)90110-6.
- [35] A. Chrysochoos and H. Louche, “An infrared image processing to analyse the calorific effects accompanying strain localization,” Int. J. Eng. Sci., vol. 38, no. 16, pp. 1759–1788, 2000, doi: 10.1016/S0020-7225(00)00002-1.
- [36] J. Hodowany, G. Ravichandran, A.J. Rosakis, and P. Rosakis, “Partition of plastic work into heat and stored energy in metals,” Exp. Mech., vol. 40, pp. 113–123, 2000, doi: 10.1007/BF02325036.
- [37] W. Oliferuk, and M. Maj, “Stress–strain curve and stored energy during uniaxial deformation of polycrystals,” Eur. J. Mech. A Solids, vol. 28, no. 2, pp. 266–272, 2009, doi: 10.1016/j.euromechsol.2008.06.003.
- [38] G.W. Adams and R.J. Farris, “Latent energy of deformation of bisphenol a polycarbonate,” J. Polym. Sci. B, vol. 26, no. 2, pp. 433–445, 1988, doi: 10.1002/polb.1988.090260216.
- [39] G.W. Adams and R.J. Farris, “Latent energy of deformation of amorphous polymers: 1. Deformation calorimetry,” Polymer, vol. 30, no. 10, pp. 1824–1828, 1989, doi: 10.1016/0032-3861(89)90352-2.
- [40] O.B. Salamatina, S.N. Rudnev, V.V. Voenniy, and E.F. Oleynik, “Heat and stored energy of plastic deformation of solid polymers and heterogeneuos blends,” J. Therm. Anal., vol. 38, pp. 1271–1281, 1992, doi: 10.1007/BF01979186.
- [41] D. Rittel, “An investigation of the heat generated during cyclic loading of two glassy polymers. part i: Experimental,” Mech. Mater., vol. 32, no. 3, pp. 131–147, 2000, doi: 10.1016/S0167-6636(99)00051-4.
- [42] D. Rittel and Y. Rabin, “An investigation of the heat generated during cyclic loading of two glassy polymers. Part ii: Thermal analysis,” Mech. Mater., vol. 32, no. 3, pp. 149–159, 2000, doi: 10.1016/S0167-6636(99)00052-6.
- [43] D. Kong, J. Li, A. Guo, X. Zhang, and X. Xiao, “Self-healing high temperature shape memory polymer,” Eur. Polym. J., vol. 120, p. 109279, 2019, doi: 10.1016/j.eurpolymj.2019.109279.
- [44] B. Heuwers, A. Beckel, A. Krieger, F. Katzenberg, and J.C. Tiller, “Shape-Memory Natural Rubber: An Exceptional Material for Strain and Energy Storage,” Macromol. Chem. Phys., vol. 214, pp. 912–923, 2013, doi: 10.1002/macp.201200649.
- [45] J.M. Muracciole, B. Wattrisse, and A. Chrysochoos, “Energy balance of a semicristalline polymer during local plastic deformation,” Strain, vol. 44, no. 6, pp. 468–474, 2008, doi: 10.1111/j.1475-1305.2007.00412.x.
- [46] E.A. Pieczyska et al., “Thermomechanical properties of poly-urethane shape memory polymer – experiment and modelling,” Smart Mater. Struct., vol. 24, no. 4, p. 045043, 2015, doi: 10.1088/0964-1726/24/4/045043.
- [47] E.A. Pieczyska et al., “Mechanical and IRT Analysis of Shape Memory Polyurethane,” J. Mater. Eng. Perform., vol. 23, no. 7, pp. 2553–2560, 2014, doi: 10.1007/s11665-014-0963-2.
- [48] M. Merzlyakov, C. Schick, “Step response analysis in DSC — a fast way to generate heat capacity spectra,” Thermochim. Acta, vol. 380, no. 1, 2001, pp. 5–12, 2001, doi: 10.1016/S0040-6031(01)00631-1.
- [49] Y.K. Kwon, Androsch, M. Pyda, and B. Wunderlich, “Multi-frequency sawtooth modulation of a power-compensation differential scanning calorimeter,” Thermochim. Acta, vol. 367–368, 2001, pp. 203-215, doi: 10.1016/S0040-6031(00)00695-X.
- [50] W. Szczepi´nski, Experimental methods in mechanics of solids, Warsaw: PWN-Polish Scientific Publishers, Elsevier Science Publishers, 1990.
- [51] W. Oliferuk, “Proces magazynowania energii i jego strukturalny aspekt podczas jednoosiowego rozciągania stali austenitycznej,” Habilitation thesis, IFTR PAS, Warsaw, 1997.
- [52] M. Maj, “Wpływ kierunku wst˛epnego odkształcenia na proces magazynowania energii w polikryształach,” PhD thesis, Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, 2007.
- [53] Staszczak, E.A. Pieczyska, R. Matsui, and K. Takeda, “Estimation of energy storage and dissipation in Shape Memory Polymer during its deformation,” in Proc. 41st Solid Mechanics Conf., 2018, pp. 338–339.
- [54] E. Ayres, R.L. Orefice, and M.I. Yoshida, “Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions,” Eur. Polym. J., vol. 43, no. 8, pp. 3510–3521, 2007, doi: 10.1016/j.eurpolymj.2007.05.014.
- [55] D. Alhazov, A. Gradys, P. Sajkiewicz, A. Arinstein, and E. Zussman, “Thermo-mechanical behaviour of electrospun thermo-plastic polyurethane nanofibers,” Eur. Polym. J., vol. 49, no. 12, pp. 3851–3856, 2013, doi: 10.1016/ j.eur polymj. 2013. 09.028.
- [56] L.E. Alexander. X-ray Diffraction Methods in Polymer Science, New York: Wiley-Interscience, 1969.
- [57] W. Thomson (Lord Kelvin), “On the thermoelastic and thermomagnetic properties of matter,” Trans. R. Soc. Edinburgh, vol. 20, no. 161, pp. 57–77, 1853.
- [58] E.A. Pieczyska et al., “Experimental and numerical investigation of yielding phenomena in a shape memory polymer subjected to cyclic tension at various strain rates,” Polym. Test., vol. 60, pp. 333–342, 2017, doi: 10.1016/j.polymertesting.2017.04.014.
- [59] E.A. Pieczyska et al., “Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates,” Smart Mater. Struct., vol. 25, no. 8, p. 085002, 2016, doi: 10.1088/0964-1726/25/8/085002.
- [60] M. Staszczak, E.A. Pieczyska, M. Maj, D. Kukla, and H. Tobushi, “Infrared thermographic analysis of shape memory polymer during cyclic loading,” Meas. Sci. Technol., vol. 27, no. 12, pp. 124007, 2016, doi: 10.1088/0957-0233/27/12/124007.
- [61] H.J. Qi, T.D. Nguyen, F. Castro, C.M. Yakacki, and R. Shandas, “Finite deformation thermomechanical behaviour of thermally induced shape memory polymers,” J. Mech. Phys. Solids, vol. 56, no. 5, pp. 1730–1751, 2008, doi: 10.1016/ j.jmps. 2007.12.002.
- [62] E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, K. Hoshio, Y. Makino, and H. Tobushi, “Characteristics of energy storage and dissipation in TiNi shape memory alloy,” Sci. Technol. Adv. Mater., vol. 6, no.8, pp. 889–894, 2005, doi: 10.1016/j.stam.2005.07.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad8694f8-0a4c-44f5-9ced-b278cc45f05b