PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of upper extremity position on EMG signal measures calculated in time, frequency and time-frequency domains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the relationship between time-frequency, time and frequency measures when considering various upper extremity positions below the level of the shoulder and in trapezius as well as deltoideus muscles. During the experiment, 15 subjects performed a task that involved screwing and unscrewing a screw cap on a board in six different locations, i.e., there were six upper extremity positions. Variables were calculated in the time, frequency and time-frequency domains on a recorded EMG signal. The results showed that parameters analyzed in the time-frequency domain were more sensitive to changes in position than parameters analyzed in the frequency domain.
Słowa kluczowe
Rocznik
Strony
83--91
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Warsaw, Poland
autor
  • Laboratory of Biomechanics, Department of Ergonomics, Central Institute for Labour Protection − National Research Institute (CIOP−PIB), Warsaw, Poland
autor
  • Laboratory of Biomechanics, Department of Ergonomics, Central Institute for Labour Protection − National Research Institute (CIOP−PIB), Warsaw, Poland
Bibliografia
  • [1] VISSER B., JAAP H., DIEËN V., Pathophysiology of upper extremity muscle disorders, J. Electromyogr. Kinesiol., 2006, Vol. 16(1), 1–16.
  • [2] BUCKLE P.W., DEVEREUX J.J., The nature of work-related neck and upper limb musculoskeletal disorders, Appl. Ergon., 2002, Vol. 33(3), 207–217.
  • [3] NIU H., LI R., LIU G., PU F., LI, D. FAN Y., Using EMG to evaluate muscular fatigue induced during video display terminal keyboard use task, 7th Asian-Pacific Conference on Medical and Biological Engineering, IFMBE Proceedings, 2008, 19, 329–332.
  • [4] HOSTENS I., RAMON H., Assessment of muscle fatigue in low level monotonous task performance during car driving, J. Electromyogr. Kinesiol., 2005, Vol. 15(3), 266–274.
  • [5] GNITECKI J.E., KLER G.P.S., MOUSSAVI Z., EMG signs of fatigue in anterior and posterior deltoid muscles: questioning the role of RMS during fatigue. 2002, Retrieved from www.ee.umanitoba.ca/~moussavi/papers/CMBES02_Jan.pdf
  • [6] HOSTENS I., SEGHERS J., SPAEPEN A., RAMON H., Validation of the wavelet spectral estimation technique in biceps brachii and brachioradialis fatigue assessment during prolonged low-level static and dynamic contractions, J. Electromyogr. Kinesiol., 2004, Vol. 14(2), 205–215.
  • [7] PULLMANS. L., GOODIN D. S., MARQUINEZ A. I., TABBAL S., RUBIN M., Clinical utility of surface EMG. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology, Neurology, 2000, Vol. 55, 171–177.
  • [8] MULAS M., FOLGHERAITER M., GINI G., An EMG-controlled exoskeleton for hand rehabilitation, International Conference on Rehabilitation Robotics, 2005, 371–374.
  • [9] WHELAN P.J., Electromyogram recordings from freely moving animals, Methods, 2003, Vol. 30(2), 127–141.
  • [10] NETO O.P., MARZULLO A.C., Wavelet transform analysis of electromyography Kung Fu strikes data, J. Electromyogr. Kinesiol., 2008, Vol. 18(6), 1047–1052.
  • [11] VANNOZZI G., CONFORTO S., D’ALESSIO T., Automatic detection of surface EMG activation timing using a wavelet transform based method, J. Electromyogr. Kinesiol., 2010, Vol. 20(4), 767–772.
  • [12] JOST W.H., ECKER K.W., SCHIMRIGK K., Surface versus needle electrodes in determination of motor conduction time to the external anal sphincter, Int. J. Colorectal Dis., 1994, Vol. 9(4), 197–199.
  • [13] KLEINE B.U., SCHUMANN N.P., BRADL I., GRIESHABER R., SCHOLLE H.C., Surface EMG of shoulder and back muscles and posture analysis in secretaries typing at visual display units, Int. Arch. Occup. Environ. Health., 1999, Vol. 72(6), 387–394.
  • [14] JIANG C.F., KUO S.L., Comparative study of wavelet denoising of surface electromyographic signals, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 1868–1871.
  • [15] ROMAN-LIU D., TOKARSKI T., KAMIŃSKA J., Assessment of the musculoskeletal load of the trapezius and deltoid muscles during hand activity, Int. J. Occup. Saf. Ergon., 2001, Vol. 7(2), 179–193.
  • [16] VEIERSTED K.B., WESTGAARD R.H., ANDERSEN P., Pattern of muscle activity during stereotyped work and its relation to muscle pain, Int. Arch. Occ. Env. Hea., 1990, Vol. 62, 31–41.
  • [17] LAUER R.T., STACKHOUSE C., SHEWOKIS P.A., SMITH B.T., ORLIN M., MCCARTHY J.J., Assessment of wavelet analysis of gait in children with typical development and cerebral palsy, J. Biomech., 2005, Vol. 38(6), 1351–1357.
  • [18] HUSSAIN M.S., MAMUN M., Effectiveness of the wavelet transform on the surface EMG to understand the muscle fatigue during walk, Measurement Science Review, 2012, Vol. 12(1), 28–33.
  • [19] HUSSAIN M.S., REAZ M.B.I., IBRAHIMY M.I., SEMG signal processing and analysis using wavelet transform and higher order statistics to characterize muscle force, 12th WSEAS International Conference on Systems, 2008, 22–24.
  • [20] VINCENT J.S., BOPARDIKAR A., RAO R., Wavelet analysis of neuroelectric waveforms: a conceptual tutorial, Brain Lang, 1999, Vol. 66(1), 7–60.
  • [21] SOBAHI N.M., Denoising of EMG signals based on wavelet transform, Asian Transactions on Engineering, 2011, Vol. 1(5), 17–23.
  • [22] ROMAN-LIU D., BARTUZI P., The influence of wrist posture on the time and frequency EMG signal measures of forearm muscles, Gait Posture, 2013, Vol. 37, 340–344.
  • [23] BARTUZI P., TOKARSKI T., ROMAN-LIU D., The effect of the fatty tissue on EMG signal in young women, Acta Bioeng. Biomech., 2010, Vol. 12(2), 87–92.
  • [24] DE LUCA C.J., The use of surface electromyography in biomechanics, J. Appl. Biomech., 1997, Vol. 13, 135–163.
  • [25] REMPEL P., JANOWITZ I., ALEXANDRE M., LEE D.L., REMPEL D., The effect of two alternative arm supports on shoulder and upper back muscle loading during pipetting, Work, 2011, Vol. 39, 195–200.
  • [26] CHRISTENSEN H., Muscle activity and fatigue in the shoulder muscles during repetitive work. An electromyographic study, Eur. J. Appl. Physiol. Occup. Phys., 1986, Vol. 54(6), 596–601.
  • [27] LARSSON R., Changes of trapezius muscle blood flow and electromyography in chronic neck pain due to trapezius myalgia, Pain, 1999, Vol. 79(1), 45–50.
  • [28] WÆRSTED M., WESTGAARD R.H., An experimental study of shoulder muscle activity and posture in a paper version versus a VDU version of a monotonous work task, Int. J. Ind. Ergonom., 1997, Vol. 19, 175–185.
  • [29] MILERAD E., ERICSON M., Effects of precision and force demands, grip diameter, and arm support during manual work: an electromyographic study, Ergonomics, 1994, Vol. 37(2), 255–264.
  • [30] GOPURA R.A.R.C., KIGUCHI K., HORIKAWA E., A study on human upper-limb muscles activities during daily upper-limb motions, Int. J. Bioelectromagnetism, 2010, Vol. 12(2), 54–61.
  • [31] KUMAR R., KUMAR S., A comparison of muscular activity involved in the use of two different types of computer mouse, Int. J. Occup. Saf. Ergon., 2008, Vol. 14(3), 305–311.
  • [32] MAMAGHANI N.K., SHIMOMURA Y., IWANAGA K., TETSUO K., Mechanomyogram and electromyogram responses of upper limb during sustained isometric fatigue with varying shoulder and elbow postures, J. Physiol. Anthropol. Appl. Human. Sci., 2002, Vol. 21(1), 29–43.
  • [33] Potvin J.R., Bent L.R., A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks, J. Electromyogr. Kinesiol., 1997, Vol. 7(2), 131–139.
  • [34] POPE M.H., ALEKSIEV A., PANAGIOTACOPULOS N.D., LEE J.S., WILDER D.G., FRIESEN K., STIELAU W., GOEL V.K., Evaluation of low back muscle surface EMG signals using wavelets, Clin. Biomech., 2000, Vol. 15, 567–573.
  • [35] CANAL M.R., Comparison of wavelet and short time Fourier transform methods in the analysis of EMG signals, J. Med. Syst., 2010, Vol. 34(1), 91–94.
  • [36] AZZERBONI B., FINOCCHIO G., IPSALE M., LAFORESTA F., CARLO MORABITO F., A new approach to detection of muscle activation by independent component analysis and wavelet transform, Neural Nets Lecture Notes in Computer Science, 2002, Vol. 2486, 109–116.
  • [37] KARLSSON S., GERDLE B., Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque – a study using the continuous wavelet transform, J. Electromyogr. Kinesiol., 2001, Vol. 11(2), 131–140.
  • [38] ESQUENAZI A., TALATY M., SELIKTA R., HIRAI B., Dynamic EMG during walking as an objective measurement of lower limb orthotic alignment, Basic Appl. Myol., 1997, Vol. 7(2), 103–110.
  • [39] AMARANTINI D., RAO G., BERTON E., A two-step EMG-andoptimization process to estimate muscle force during dynamic movement, J. Biomech., 2010, Vol. 43, 1827–1830.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad853a2b-ab26-4a28-bcb9-6a4cd32682a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.