PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy-based prediction for suddenly expanded axisymmetric nozzle flows with microjets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current research focuses on the implementation of the fuzzy logic approach for the prediction of base pressure as a function of the input parameters. The relationship of base pressure (β ) with input parameters, namely, Mach number (M), nozzle pressure ratio (η), area ratio (α), length to diameter ratio (ξ ), and jet control (ϑ ) is analyzed. The precise fuzzy modeling approach based on Takagi and Sugeno’s fuzzy system has been used along with linear and non-linear type membership functions (MFs), to evaluate the effectiveness of the developed model. Additionally, the generated models were tested with 20 test cases that were different from the training data. The proposed fuzzy logic method removes the requirement for several trials to determine the most critical input parameters. This will expedite and minimize the expense of experiments. The findings indicate that the developed model can generate accurate predictions
Rocznik
Strony
art. no. e142654
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Fluids Group, School of Mechanical Engineering, Istanbul Technical University, Gümüs¸suyu, 34437 Istanbul
autor
  • Department of Mechanical Engineering, Sahyadri College of Engineering and Management, Mangaluru 575007, Karnataka, India
autor
  • Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100, Selangor, Malaysia
autor
  • Department of Engineering Management, College of Engineering, Prince Sultan University, 66833, Riyadh 11586, Saudi Arabia
autor
  • Department of Engineering Management, College of Engineering, Prince Sultan University, 66833, Riyadh 11586, Saudi Arabia
  • National Centre for Motorsport Engineering, University of Bolton, Bolton, BL3 5AB, UK
Bibliografia
  • [1] H.A Korst, “Theory of base pressure in Transonic and Supersonic flow,” J. Appl. Mech., vol. 23, pp. 593–600, 1956.
  • [2] A.K. Perumal, H. Singh, and E. Rathakrishnan, “Passive control of coaxial jet with supersonic primary jet and sonic secondary jet,” Phys. Fluids., vol. 32, p. 076101, 2020.
  • [3] D. Fontanarosa, M.G. De Giorgi, and A. Ficarella, “Thrust Augmentation of Micro-Resistojets by Steady Micro-Jet Blowing into Planar Micro-Nozzle,” Appl. Sci., vol. 11, p. 5821, 2021.
  • [4] B. Semlitsch, M. Mihaescu, L. Fuchs, and E.J. Gutmark, “Large Eddy Simulations of Microjets Impact on Supersonic Jet Exiting a C-D Conical Nozzle,” Am. Inst. Astronaut. Aeronaut. J., p. 2139, 2013, doi: 10.2514/6.2013-2139
  • [5] S.A. Khan and E. Rathakrishnan, “Active control of suddenly expanded flow from under expanded nozzles,” Int. J. Turbo Jet Engines, vol. 21, no. 4, pp. 233–253, 2004.
  • [6] S.A. Khan and E. Rathakrishnan, “Control of suddenly expanded flow from correctly expanded nozzles,” Int. J. Turbo Jet Engines, vol. 21, no. 4, pp. 255–278, 2004.
  • [7] M.A.A. Baig, F. Al-Mufadi, S.A. Khan, and E. Rathakrishnan, “Control of base flows with micro jets,” Int. J. Turbo Jet Engines, vol. 28, no. 1, pp. 259–269, 2011.
  • [8] T.P. Chiang, A. Sau, and R.R. Hwang, “Asymmetry and bifurcations in three-dimensional sudden-contraction channel flows,” Phys. Rev. E., vol. 83, p. 046313, 2011.
  • [9] B. Semlitsch and M. Mihaescu, “Fluidic Injection Scenarios for Shock Pattern Manipulation in Exhausts,” Am. Inst. Astronaut. Aeronaut. J., vol. 56, no. 12, pp. 4640–4644, 2018.
  • [10] B. Semlitsch, D.M. Cuppoletti, E.J. Gutmark, and M. Mihaescu, “Transforming the Shock Pattern of Supersonic Jets Using Fluidic Injection,” Am. Inst. Astronaut. Aeronaut. J., vol. 576, no. 5, pp. 1851–1861, 2018.
  • [11] A.P. Khizar, P.S. Dabeer, and S.A. Khan, “Optimization of area ratio and thrust in suddenly expanded flow at supersonic Mach numbers,” Case Stud. Ther. Eng., vol. 12, pp. 696–700, 2018.
  • [12] A. Abid and S.A. Khan, “Investigation of high-speed flow control from C-D nozzle using design of experiments and CFD methods,” Arabian J Sci Eng., vol. 46, pp. 2201–2230, 2020.
  • [13] J.D. Quadros, S.A. Khan, A.J. Antony, and S.V. Jolene, “Experimental and Numerical Studies on Flow from Axisymmetric Nozzle Flow with Sudden Expansion for Mach 3.0 using CFD,” Int. J. Energy Environ. Econ., vol. 24, no. 1, pp. 61–72, 2016.
  • [14] J.D. Quadros and S.A. Khan, “Prediction of base pressure in a suddenly expanded flow process at supersonic Mach number regimes using ANN and CFD,” J Appl. Fluid. Mech., vol. 13, no. 2, pp. 499–511, 2020.
  • [15] R. Jagannath, N.G. Naresh, and K.M. Pandey, “Studies on Pressure Loss in Sudden Expansion in Flow through Nozzles: A Fuzzy Logic Approach,” ARPN J. Eng. Appl. Sci., vol. 2, pp. 50–61, 2007.
  • [16] A. Afzal, S.A. Khan, M.T. Islam, R.D. Jilte, A. Khan, and M.E.M. Soudagar, “Investigation and back-propagation modeling of base pressure at sonic and supersonic Mach numbers,” Phys. Fluids, vol. 32, p. 096110, 2020.
  • [17] J.D. Quadros, S.A. Khan, S. Sapkota, J. Vikram, and T. Prashanth, “On Recirculation Region Length of Suddenly Expanded Supersonic Flows, Using CFD and Fuzzy Logic,” Int. J. Comput. Fluid Dyn., vol. 34, pp. 1–16, 2020.
  • [18] A. Afzal, A. Aabid, A. Khan, S.A. Khan, U. Rajak, T.N. Verma, and R. Kumar, “Response surface analysis, clustering, and random forest regression of pressure in suddenly expanded highspeed aerodynamic flows,” Aerosp. Sci. Technol., vol. 107, p. 106318, 2020.
  • [19] A. Afzal and M.K. Ramis, “Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics,” J. Energy Storage, vol. 32, p. 101815, 2020.
  • [20] A. Afzal, S. Alshahrani, A. Alrobaian, A. Buradi, and S.A. Khan, “Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms,” Energies, vol. 14, no. 21, p. 7254, 2021.
  • [21] A. Afzal, J.K. Bhutto, A. Alrobaian, A. Razak Kaladgi, and S.A. Khan, “Modelling and Computational Experiment to Obtain Optimized Neural Network for Battery Thermal Management Data,” Energies, vol. 14, no. 21, p. 7370, 2021.
  • [22] A. Afzal, K.M. Yashawantha, N. Aslfattahi, R. Saidur, R.K. Abdul Razak, and R. Subbiah, “Back propagation modelling of shear stress and viscosity of aqueous Ionic-MXene nanofluids,” J. Therm. Anal. Calorim., vol. 145, pp. 2129–2149, 2021.
  • [23] I. Mokashi, A. Afzal, S.A. Khan, N.A. Abdullah, M.H.B. Azami, R.D. Jilte, and O.D. Samuel, “Nusselt number analysis from a battery pack cooled by different fluids and multiple back-propagation modelling using feed-forward networks,” Int. J. Therm. Sci., vol. 161, p. 106738, 2021.
  • [24] J.D. Quadros, S.A. Khan, and A.J. Antony, “Modelling of Suddenly Expanded Flow Process in Supersonic Mach Regime using Design of Experiments and Response Surface Methodology,” J. Comput. Appl. Mech., vol. 49, no. 1, pp. 149–160, 2018.
  • [25] M.B. Parappagoudar, D.K. Pratihar, and G.L. Datta, “Linear and non-linear statistical modelling of green sand mould system,” Int. J. Cast Met. Res., vol. 20, no. 1, pp. 1–13, 2007.
  • [26] M.P.E. Gonzalez and L.E. García-Díaz, “Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area,” Chem. Eng. J., vol. 163, no. 1–2, pp. 55–61, 2010.
  • [27] P.R. Vundavilli, M.B. Parappagoudar, S.P. Kodali, and S. Benguluri, “Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process,” Knowledge Based Syst., vol. 27, pp. 456–464, 2012.
  • [28] B. Surekha, P.R. Vundavilli, and M.B. Parappagoudar, “Forward and reverse mappings of the cement-bonded sand mould system using fuzzy logic,” Int. J. Adv. Manufac. Technol., vol. 61, no. 9-12, pp. 843–854, 2012.
  • [29] M.G.C. Patel, P. Krishna, and M.B. Parappagoudar, “Prediction of Secondary Dendrite Arm Spacing in Squeeze Casting Using Fuzzy Logic Based Approaches,” Arch. Foundry Eng., vol. 15, no. 1, pp. 51–68, 2015.
  • [30] M.B. Parappagoudar and P.R. Vundavilli, “Application of modeling tools in manufacturing to improve quality and productivity with case study,” Proc. Manufac. Syst., vol. 7, no. 4, pp. 193–198, 2012.
  • [31] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, New Jersey, United States, 1994.
  • [32] S. Rajasekaran and G.V. Pai, Neural networks, fuzzy logic and genetic algorithm: synthesis and applications, PHI Learning Pvt. Ltd., India, 2003.
  • [33] B.K.Wong and V.S. Lai, “A survey of the application of fuzzy set theory in production and operations management: 1998–2009,” Int. J. Produc. Econom., vol. 129, no. 1, pp. 157–168, 2011.
  • [34] M.A. Yurdusev and M. Firat, “Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey,” J. Hydrol., vol. 365, no. 3, pp. 225–234, 2009.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad84b570-9bab-4f38-908a-6aebfb1fc1e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.